
acmqueue | september-october 2016 1

I
n his paper titled “Industrial Scale Agile,”9 Roly Stimson
characterizes industrial-scale agile as:
“Agile at any scale.”
“Agile as the rule, not the exception.”
 “Agile sustainably, forever,” not just as an unrepeatable
“one-off.”

This means being able to sustainably apply agile
strategies appropriately to anything and everything that
can benefit from them. This includes:
3 Being able to do “agile at scale” as and when appropriate.
3 Doing small-scale agile as and when possible/

appropriate.
3 Evolving the entire application landscape and not just

individual applications.
Although it is important, and a necessary precursor

to industrial-scale agile, scaling agile is not the challenge
here. Rather, it’s about how to achieve sustainability of the
following:
3 The way of working in the face of ever-changing teams.

Essence is
instrumental
in moving
software
development
toward a true
engineering
discipline

IVAR JACOBSON, IAN SPENCE, AND ED SEIDEWITZ

1 of 31 TEXT
ONLY

Industrial-Scale
Agile

 Engineering

Craftfrom

to

development

acmqueue | september-october 2016 2

3 The systems in the face of rapid change.
3 The application landscape as a whole.
3 Individuals and their careers, and the development

organization as a whole.
3 Long-term investment in IT.

There are many, many ways to illustrate how fragile IT
investments can be. You just have to look at the way that,
even after huge investments in education and coaching,
many organizations are struggling to broaden their agile
adoption to the whole of their organization—or at the
way other organizations are struggling to maintain the
momentum of their agile adoptions as their teams change
and their systems mature.

Another frequent example of unsustainability is in the
way that many companies are facing an uncontrolled
explosion in the number of applications they have to
support and the overall cost of ownership of IT as a whole.

So industrial-scale agile requires much more than just
being able to scale agile. It also means taking a disciplined
approach to ensuring that IT investments result in
sustainable benefits for both the producing organization
and its customers.

This involves adopting a different approach to many
aspects of agility. We need to look beyond small-scale
agile, beyond independent competitive islands of agile
excellence, beyond individual craftsmanship and heroic
teams, and beyond the short-term instant gratification
that seems to be the focus of many well-intentioned
but self-centered agile teams. It is this adoption of a
more holistic approach that we call moving from craft
to engineering. (We have tried to keep this article short,

2 of 31development

acmqueue | september-october 2016 3

but for readers new to this space, we recommend “A New
Software Engineering”3 for more background.)

FROM CRAFT TO ENGINEERING
The move toward agility has led to many benefits for
the software industry. It has broken the tyranny of the
prescriptive waterfall approach to software engineering,
an approach that was causing more and more large project
failures, and it has allowed software developers to keep
up with the ever-increasing demand for more innovative IT
solutions.

It has enabled many companies to do great things but
in many cases has led to a culture of entitlement, heroic
programming, and short-term thinking that threatens the
sustainability of the parent companies and the IT solutions
on which they depend. Little or no thought is put into
maintainability, the heroes become potential single points
of failure, and the cost of keeping the lights on just keeps
growing and growing.

What is needed is a way to maintain the values of agility
while making software development more an engineering
discipline than a craft—a new form of agile software
engineering fit for the Internet Age.

What are craft and engineering?
The term craft is usually applied to people occupied in
small-scale production of bespoke goods and trades
where skills are passed in person from master to
apprentice. Engineering, on the other hand, is defined by
Wikipedia (https://en.wikipedia.org/wiki/Engineering) as
“the application of mathematics, empirical evidence and

3 of 31development

http://queue.acm.org/detail.cfm?id=2693160
http://queue.acm.org/detail.cfm?id=2693160
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Empirical_evidence

acmqueue | september-october 2016 4

scientific, economic, social, and practical knowledge in
order to invent, innovate, design, build, maintain, research,
and improve structures, machines, tools, systems,
components, materials, and processes.”

There have been many discussions about whether or
not the term engineering should be applied to software
development and whether or not software engineers
are actually engineers. With the rise of cloud computing,
big data, and the Internet of things, however, it is clear
that there are many types of software and many aspects
of software development that would benefit from an
engineering approach.

In her seminal paper, “Prospects for an Engineering
Discipline of Software,”7 in 1990, Mary Shaw suggested
that a definition of software engineering would include
these clauses: “Creating cost-effective solutions…to
practical problems…by applying scientific knowledge…
building things…in the service of mankind.” She also said
about software work that “most tasks are routine and
not innovative,” but it “is treated more often as original
than routine,” implying that there is a lot of potential
for improving quality and shortening time to market “if
we captured and organized what we already know” by
codifying our knowledge, possibly even automating it.

Her observations are still highly relevant; at the GoTo
Amsterdam 2015 conference on software development,
she talked about the progress that has been made toward
establishing a software engineering discipline. According
to Shaw, the characteristics of engineering are as follows:
3 Limited time, knowledge, and resources force decisions

on tradeoffs.

4 of 31development

https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Invention
https://en.wikipedia.org/wiki/Design
https://en.wikipedia.org/wiki/Maintenance,_repair,_and_operations
https://en.wikipedia.org/wiki/Engineering_research
https://en.wikipedia.org/wiki/Structural_engineering
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Tool
https://en.wikipedia.org/wiki/Systems_engineering
https://en.wikipedia.org/wiki/Part_(system)
https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Process_(engineering)

acmqueue | september-october 2016 5

3 The best-codified knowledge, preferentially science,
shapes design decisions.

3 Reference materials make knowledge and experience
available.

3 Analysis of design predicts properties of implementation.
Although software development shares many of the
characteristics of an engineering discipline, we are not
there yet. The rise of agile is not a problem unless this is
where we stop.

Why more engineering?
Why is it important to move from craft to engineering?

Doing so will help us cope with the ever-increasing
challenges of a more automated, more interconnected
world—where small improvements in software
performance can make the difference between profit and
loss; where a reputation for robustness, scalability, and
security can add millions to the share price; and where
software is more and more the public face of the business.

The codified knowledge and professionalism of an
engineering discipline are necessary for:
3 Sustaining and growing delivery capability through

changes in technologies, teams, and suppliers.
3 Predictably scaling operations from early prototypes to

global rollouts.
3 Taking control of investments and knowing when to pivot

to solutions more likely to deliver favorable returns.
3 Systematically growing the levels of reuse and

interoperability of solution components and systems.
3 Producing long-lived solutions with affordable costs of

ownership.

5 of 31development

acmqueue | september-october 2016 6

Perhaps not everybody needs to move from craft to
engineering. As Mary Shaw says, “The greatest need for
engineering discipline exists for software systems that are
fully automated and are operating unattended and where
the consequences of failure are catastrophic. Examples
are telecom equipment, nuclear safety devices, medical
implants, self-driving cars, and stock-trading programs.
The need for engineering in software development
depends upon how serious the consequences are when
things go wrong and whether human beings can take
action in time to minimize the consequences.” There is
also a strong need for engineering systems used for
e-commerce, finance, electronic medical records, and even
human resources. The consequences of failures in such
systems may not include the immediate loss of life, but
they can still be “catastrophic” to either the businesses or
the individuals affected.

Thus, for many organizations and software systems
craft is not enough.

The good news is that there is a way forward that
maintains the values of agile while making software
development more of an engineering discipline than a
craft. It involves:

Engineering of software. This means the holistic
engineering of all software to improve the application
landscape as a whole, as well as the individual point solutions.
Practices are needed that help teams engineer their
software for capturing requirements and for developing
software designed for engineering great products. It also
means encouraging innovation in the large as well as
the small—innovation of new business and new product

6 of 31development

acmqueue | september-october 2016 7

opportunities as well as innovation that addresses the total
cost of ownership impacting the whole organization, rather
than just individual users and applications.

Engineering of methods. Methods should be engineered
to support the full range of development challenges faced
today and in the future. The emerging best practice should
be captured and codified in a way that makes it easy to
communicate and share among teams, and enables each
team to compose the method they need from this growing
set of reusable, proven practices.

Furthermore, moving from craft to engineering provides
a robust platform for encouraging, establishing, and
sustaining true organizational agility.

Engineering of software
How would software be developed if the craft were
already a real engineering discipline? As in other
engineering disciplines, it would be engineered by using
commonly accepted, consistent practices that would be
supported by models and analysis based on a common
ground of foundational knowledge.

In the past, such an engineering mindset has been
misinterpreted as meaning “big upfront design,” with
everything downstream of this being akin to manufacturing
rather than engineering. Upfront blueprinting is, indeed,
often necessary for the engineering of physical artifacts
such as buildings, bridges, and cars. This is done so that
proper analysis can be carried out on the upfront models
and blueprints, because of the capital cost required to
build those things and the difficulty of changing them once
built. Software, however, is a different kind of artifact—one

7 of 31development

acmqueue | september-october 2016 8

that does not require manufacturing in the physical sense.
Agility in software development takes advantage of

this characteristic, allowing
software to be developed in a
rapid and incremental, but still
reliable, way; however, there is
a place for disciplined design
within an agile development
approach. It is just that, with
software, developers can also
carry out analysis and evolve
designs incrementally, as they
build the software system
itself.

What is needed is, in fact,
a merger of the agile mindset
with the engineering mindset,
combining incremental
development with the
disciplined application of
foundational knowledge. In
such an approach, not everyone
will necessarily be an engineer,
but developers will continue to
be treated as skilled craftsmen,
not factory workers. (See
sidebar, “Craftsmanship and
Engineering.”)

It is common in agile approaches to talk of the emergence
of the design of a software system as that system is
iteratively developed. This is the very embodiment of

8 of 31

Craftsmanship and Engineering
 Related to the idea of craft is
 craftsmanship, performed by a
person who practices or is highly skilled in a
craft. Software development will always need
craftsmanship that can stand on more or less
science, more or less engineering, and more or
less structured knowledge. We would, for
example, describe an engineer as a craftsman
using engineering practices in developing
software. The new software craftsmanship
movement is supportive of many engineering
practices—for example, they are strong
supporters of design and architecture patterns,
domain-driven design, etc. They take pride in using
the right tools, techniques, and design methods to
achieve high-quality software. They do not believe
in heroics, but in quality of work and in tools. They
believe in sustainability, and in keeping the system
“clean” and able to absorb change and rework.
The craftsmanship movement, however, doesn’t
fully address the whole engineering space and, in
particular, how to systematically grow knowledge
about the discipline.

3

development

acmqueue | september-october 2016 9

evolutionary design as opposed to big upfront design. It can
be very effective in allowing a team to explore alternatives
creatively, while still converging on a good solution with a
clear overall design.

Such emergent design, however, tends to produce
point solutions for specific teams. Serious software
development organizations, though, are almost always
dealing with multiple teams working on multiple projects
within an overall enterprise-level application landscape.
Various project-level solutions need to fit into this evolving
landscape. Indeed, the development of a large software
system often requires multiple teams whose products are
components that must fit together to create the overall
system.

Dealing with design at this level is the province of
software architecture, which, at both the system and
enterprise levels, can and should still be evolutionary.
Rather than being entirely emergent, however, key
architectural decisions, presented in a development
roadmap, often need to be made in advance of the
corresponding development work in order to provide
common guidance across projects and teams. This is where
engineering practices can be particularly important,
allowing for innovations that benefit the organization as a
whole, based on careful analysis of business benefit versus
engineering cost.

Engineering of methods
Moving from craft to engineering relies on the codification
and sharing of knowledge. What is needed is for
organizations to engineer their methods in order to be

9 of 31development

acmqueue | september-october 2016 10

more effective at engineering their software.
Most methods in use today are at the extremes, either

monolithic or tacit. The agile space is experiencing the
rise of a number of competing, monolithic scaled agile
methods, such as DAD (disciplined agile delivery), SAFe
(Scaled Agile Framework), LeSS (Large-scale Scrum),
and SPS (Scaled Professional Scrum). All these methods
have their special strengths and weaknesses. They have
their own camps of supporters, but their monolithic
nature doesn’t make it practical to borrow ideas from one
another, even less to borrow complete codified practices.
This situation is very similar to what we had in the past
with methods such as RUP (Rational Unified Process),
Open, Structured Analysis and Design, etc. We have also
observed that, at many large organizations, the success of
tacitly applied agile practices has led to a situation where
the previously used and codified (documented) methods
have been replaced by undocumented agile folklore.

The paradox here is that the discomfort caused by not
having a documented method causes many organizations
to seek to replace their tacit agile methods with one of the
new monolithic methods. What they don’t realize is that it
will end up being rejected in the same way as the original
method as teams seek to innovate and meet the day-to-day
challenges inherent in their systems and circumstances.
This often leads to a constant churn as method replaces
method with little or no rhyme or reason. The industry’s
habit of constantly switching between no methods and the
latest “one true way” (an affliction that is sadly affecting
even the agile community) is not the way forward.

Instead, organizations need an effective way of using

10 of 31development

acmqueue | september-october 2016 11

what they learn from effort to effort, applying and
adapting it to new projects. Moving blindly from one
fad method to another provides no consistent basis for
building common knowledge. Mandating a one-size-fits-
all process for all projects does not support the need
for continual learning and adaptation, however, and
suppresses craftsmanship and creativity.

The move from craft to engineering requires first
freeing the practices, presenting them in an accessible,
reusable way that allows engineers confidently and
predictably to select the right engineering practices for
their context and the problems they are trying to solve.

ESSENCE: A HOPE FOR A BETTER FUTURE
Software development is a multidimensional endeavor—
where human ingenuity meets human need meets
collective endeavor meets codified knowledge—that
would benefit from the judicious application of engineering
practices. The path from craft to engineering progresses—
from ad hoc practice to codified professional engineering
practices—through scientific learning.

The key to this transformation is the ability to readily
capture, share and improve the practices.

What is Essence?
Essence is a simple intuitive language and kernel of
foundational elements for the capture, description, and
assembly of practices and methods. Work on Essence
has been going on for more than 10 years—for the last six
years within the SEMAT (Software Engineering Method
and Theory) community—resulting in a new international

11 of 31development

acmqueue | september-october 2016 12

standard, adopted by OMG (Object Management Group)
in 2014.5 It goes beyond just providing syntax and notation
for describing practices to establishing a solid common
ground—a kernel—that enables teams to:
3 Describe their practices on top of a universal, shared

kernel.
3 Easily share, adapt, and plug and play with their practices

to create the innovative ways of working they need to
excel and continuously improve.

3 Understand and visualize the progress and health of
their endeavors, regardless of their way of working.

(For more information on Essence, additional resources
are listed at the end of this article.)

Essence has several roles to play in the move from craft
to engineering:
3 Helping to achieve the right balance in software

engineering endeavors.
3 Helping to codify and capture engineering practices.
3 Acting as the basis for a new kind of engineering

community.
The use of Essence alone won’t turn craftspeople into

engineers, but its adoption will help an organization make
this important transition and, moreover, help the industry
prepare for the future.

Balancing progress and health
Essence provides a kernel of elements that establishes
a common ground for carrying out software engineering
endeavors. This can be used in a number of ways to
increase the effectiveness of software engineering teams,
including the following.

12 of 31development

acmqueue | september-october 2016 13

Actively monitoring the health of an endeavor.
The kernel defines seven aspects of concern for any
software engineering endeavor: opportunity, stakeholders,
requirements, team, work, way of working, and the
software system itself. For each of these elements
Essence defines a series of states, with checklists,
representing healthy progress. As shown in figure 1,
these can be used to create practice-independent health
monitors that can be used to check that the endeavor is on
course and proceeding in a healthy manner. On the top, the
radar chart (an interactive, online version complete with
checklists is available1) represents progress as growth
from the center; and on the bottom, on the milestone
map (available from the App Store as the Alpha State
Explorer app by Ivar Jacobson International), all the states
are laid out in order from top to bottom, with achieved
states shown filled in. The second example also shows the
checklist used to confirm the achievement of the Software
System Demonstrable state.

The kernel can also be used to create lightweight
governance and compliance practices to help ensure the
team achieves the required level of engineering rigor.
By basing the governance and compliance on the kernel
itself, this can be achieved in a practice-independent
fashion, allowing the teams to safely innovate and own
their own ways of working. Figure 2 shows the four
different governance life cycles that were at the heart
of Munich Re Essentials, the modern practice-based
software development method created by Munich
Reinsurance.4 The four life cycles are Exploratory, Feature
Growth, Maintenance, and Support, and the checkpoints

13 of 31development

acmqueue | september-october 2016 14

Way-of-Working Opportunity

Stakeholders

Requirements

Software
System

Work

Team

a simple radar chart

a milestone map (with active checklists)

FIGURE 1: Simple Essence-Based Health Monitors 1
14 of 31development

acmqueue | september-october 2016 15

(milestones) of each life cycle are defined by the states to
be achieved for each alpha.

Assessing the effectiveness of methods.
Essence at its roots gives a detailed definition of software
engineering. In the search for a GTSE (general theory
ofsoftware engineering),6 several researchers use Essence
as such a definition, and more is expected to come out of
this work. A key aspect provided by such a theory is the
capability to be predictive.

A construction engineer can use material science and
the theory of structures to understand at an early stage
whether a proposed building is likely to stand or fall.
Similarly, using Essence, one can understand whether

Elaboration

Inception

Transition

Construction

$$

Opportunity Requirements System Team Work Way of Working

Solution Needed

Benefit Accrued

Identified

Bounded

Acceptable

Addressed

Demonstrable

Retired

Seeded

Collaborating

Adjourned

Initiated

Concluded

Prepared

Closed

Principles
Established

Retired

In Use

Operational

Stakeholders

Represented

Satisfied in Use

Recognized

Value
Established Conceived

Approach
Selected

Formed Foundation
Established Started Involved

In Agreement

Fulfilled

Viable Coherent

Approach
Selected

Usable

Under
Control Performing

In Place

Working Well

Addressed Fulfilled Ready (Concluded) Working Well Performing
Satisfied for
Deployment

Usable

Exploratory

'

Feature Growth

Maintenance & Small
Enhancements

Support

FIGURE 2: Four Compatible Governance Lifecycles Defined Using the Essence Kernel2
15 of 31development

acmqueue | september-october 2016 16

a proposed method is well constructed, whether or not
there are any gaps or overlaps in its practices, and if there
are gaps or overlaps, how to resolve them.

The kernel has many mechanisms for method analysis,
the simplest of which is provided by its high-level activity
map. This is a set of 12 activity spaces organized into three
areas of concern. An activity space is a generic placeholder
for method-specific activities. These activity spaces, as
shown in figure 3, can be used to assess the spread of the
team’s activities. In this example, the team has added notes

Cu
st

om
er

So
lu

tio
n

En
de

av
ou

r

Explore
Possibilities

Ensure Stakeholder
Satisfaction

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Use the System

Operate
the System

Understand
Stakeholder Needs

Prepare to
do the Work

Coordinate
Activity

Support
the Team

Stop the
Work

Track
Progress

Understand the
Requirements

FIGURE 3: Simple Essence-Based Activity Map

3

16 of 31development

acmqueue | september-october 2016 17

to the map to indicate their activities and red circular
markers to highlight the danger areas.

Note: Without understanding the meaning of the
Essence language, the symbol of a pointed arrow to
represent an activity space can make them appear
sequential, which is not the intended meaning. The activity
spaces and the activities that they contain can of course
be applied iteratively, concurrently, or in any order the
practices require.

These are just a few simple examples of the kernel’s
capabilities, but they illustrate the many ways it can help
teams and organizations assess the effectiveness of their
methods.

Codifying and capturing engineering practices
In addition to the kernel, Essence provides a language for
creating practices on top of the kernel and then composing
methods from those practices. This is extremely important
for moving from craft to engineering.

As discussed previously, most current practices are
embedded in monolithic methods that aggressively
compete with one another. Rather than admit that
they share practices and encourage reuse and cross-
pollination, they willfully slander and steal from one
another. Even worse, from an engineering perspective,
they are all concerned with the design and sustainability
of the development organization rather than the design
and sustainability of the systems produced. This is not to
say that the former isn’t important. Indeed, it is crucial
to the success of any development organization. As the
integration of software into the fabric of our daily lives

17 of 31development

acmqueue | september-october 2016 18

grows, however, the need for proven, reusable engineering
practices grows as well.

Practices are needed that help teams engineer their
software: practices for working with requirements, such as
use cases, features, and stories; for developing components
and services; for applying an appropriate pattern or
framework; for testing complex, distributed systems;
that encourage reuse; and that help engineers code with
confidence. In particular, practices are needed for dealing
with architectural concerns such as concurrency, security,
user experience, microservices, and data protection, as well
as for addressing broader architectural concerns such as
enterprise architecture, product-line architecture, service-
oriented architecture, and the architecture of systems of
systems. Many of these practices already exist codified in
the Essence language (see the section on Sharing Practice:
Methods and Practice Libraries).

These engineering practices need to be streamlined
(lean), agile, and, most importantly, composable into
complete methods to provide guidelines for teams working
with a multitude of practices for complex systems. They
are needed to help deal with the complexities of modern
software engineering. They need to be available to all
engineers whether they are working alone, in small teams,
or in larger teams of teams, regardless of the style of team
working or work-management practices adopted.

Globally, we want a robust and flexible library of
codified professional engineering practices that reflect
the multidimensional nature of software development and
that can be used to support the many different types of
software being developed today and in the future.

18 of 31development

acmqueue | september-october 2016 19

These practices can only come from engineering teams
working on the cutting edge of technology, and these
teams need a better way to capture, communicate, and
share their practices.

A new method architecture
With the Essence kernel as common ground, you can use
the Essence language to describe any practices, including
engineering practices, in a way that allows them to be
composed seamlessly together to form methods. Figure
4 illustrates a three-layer method architecture with the

domain-specific
practices

extensions to the generic
practices and additional

domain-specific practices

generic practices
standard practices to support

effective team working and
sound engineering principles

common ground
the basic concepts applicable

to all captured as a kernel
The Essence
Kernel

FIGURE 4: The Essence Method Architecture

4

19 of 31development

acmqueue | september-october 2016 20

kernel as the foundation, generic practices in the middle,
and domain-specific practices at the top.

Starting from the bottom of the stack, the three layers
are:
 The Essence kernel. This provides the common ground for
all practices and methods and the underlying foundation
for the definition and composition of the practices.
 Generic practices. These are practices that are applicable
across many software engineering domains. Examples of
generic practices include Scrum, use cases, user stories,
test-driven development, and acceptance-test-driven
development. Many engineering practices will be generic,
but many of the most valuable will be domain-specific.
Domain-specific practices. These practices are explicitly
targeted to a specific domain such as business intelligence,
data warehousing, or telecommunications. Domain-specific
practices are equally as important as generic practices, if
not more so. For example, many domain-specific practices
are needed to develop solutions for the Internet of things;
these practices cater to things such as asset integration
architecture and different technology profiles. Just as
generic practices extend the kernel to provide specific
guidance, domain-specific practices are often extensions/
specializations of the generic practices. For example, an
asset integration architecture practice could be presented
as an extension to a generic agile architecture practice.

The separation of generic practices from domain-
specific practices helps teams find the practices that they
need and helps organizations establish common ways of
organizing and tracking their work. It is not uncommon for
an organization to standardize on a small set of generic

20 of 31development

acmqueue | september-october 2016 21

practices as the foundation for all of its teams’ methods.
Liberating practices in this way is very powerful.

Once practices are codified in Essence, teams can take
ownership of their ways of working and start to assemble
their own methods. This can start with even a simple
library of practices, as shown in figure 5.

This capturing and sharing of engineering practices,
both generic and domain-specific, in a way that lets them

Use Case

The
Kernel

Architecture Iterative Test-Driven
Development

TDD

User
Story

Component

shared practice library
Scrum Kanban

Use
Case

The
Kernel

Archi-
Tecture

Com-
ponent

team A
Use Case

team B
Kanban The

Kernel

User
Story

Com-
ponent

team C

Scrum
The

Kernel
Test-

Driven
Development

TDD

Iterative

FIGURE 5: Three teams sharing a simple practice library 5

21 of 31development

acmqueue | september-october 2016 22

be applied alongside popular management practices (agile
or otherwise), provides the codified knowledge needed to
support a true software engineering discipline. It is also
the key to moving away from monolithic management
methods and isolated engineering practices.

Sharing practice: methods and practice libraries
It’s easy to say that teams will be able to plug and play
with sets of practices to build their own methods and
take ownership of their way of working. But where are the
practices going to come from?

Let’s take a look at two concrete examples.

Agile methods
The industry has seen an explosion in the number of
generic agile practices being published and promoted.
Unfortunately, most of these “belong” to one method or
another and, even though they share the same values, are

Agile
Teaming

Essentials

Product
Backlog

Essentials

Product
Ownership
Essentials

Agile
Retrospective

Essentials

Daily
Stand-Up

Essentials

Agile
Development

Essentials

Agile
Timeboxing
Essentials

FIGURE 6: Agile Essentials with its seven practices

6

22 of 31development

acmqueue | september-october 2016 23

rarely presented in a way that lets them play well together.
This is particularly true in the area of scaled agile methods,
where each method contains many of the same practices
tangled up with a few new, unique, and innovative practices
in such a way that the safe separation of the new practices
for use with another method is nearly impossible.

In contrast, figure 6 outlines a starter pack of agile
practices based on Essence, called Agile Essentials.2 It
includes practices from Scrum, Kanban, and XP (extreme
programming).

This is a small library of seven practices, which, when
composed together, form a starting point for a team’s
agile method. Scrum, user stories, and use cases have also
been “essentialized” and can be used alongside the Agile
Essential practices.

Thus, with Essence, a library of generic, reusable
practices can be created, from which a team can select the
ones they want to use and that they can compose together
to kick-start their own method.

The Ignite Internet of Things methodology
Ignite is a methodology developed for the Internet of
things.8 It supports a number of different approaches
and attempts to bridge the gaps between “machine guys”
and “Internet guys,” and between “five-year thinking”
and “continuous beta.” Ignite can easily be described as
a set of practices on top of the Essence kernel. Figure 7
demonstrates what Ignite looks like when presented using
Essence.

This picture readily illustrates a number of key points:
3 Ignite clearly contains and reuses a number of generic

23 of 31development

acmqueue | september-october 2016 24

practices that are applicable in many more domains than
the Internet of Things, including those already available

VisionScrumUser
Story

IoT
Technical

Design

IoT
Functional

Design

m
et

ho
d

Io
T-

sp
ec

ifi
c

pr
ac

tic
es

ge
ne

ric
 p

ra
ct

ic
es

ke
rn

el

IoT solution
delivery method

IoT
Project

Initiation

Use
Case
2.0

Periodic
Alignment

Shared
Backlog

Product
Manage-

ment

Archi-
tecture

Agile
Archi-

tecture

Release
Manage-

ment

Product
Backlog

Product
Owner-

ship

Agile
Time-

boxing

Agile
Develop-

ment

Kernel

FIGURE 7: Ignite expressed as a set of Essence Practices 7
24 of 31development

acmqueue | september-october 2016 25

as part of the Agile Essentials practice library.
3 Successful development for the Internet of Things

requires many domain-specific engineering practices.
3 Whenever anyone wants to create a new method, they

currently have to rewrite, re-present, and, in many cases,
rebrand already established generic practices.

3 The more comprehensive the approach, the less likely
it is that anyone will use all of it. For example, no one is
ever going to use all of these practices at the same time.
Clearly, there are many methods that could be built from
the practices contained within the Ignite methodology,
but without the use of Essence this will be very difficult,
if not impossible, for teams to do.
Many other practices could be useful for teams

developing for the Internet of Things. Some of these will
be innovations unknown at the time of writing this paper or
the creation of Ignite. This can easily lead to the approach
becoming out of date and unfashionable. The presentation
of Ignite as a practice library allows the practice set to
respond to the needs of the users, who may regularly add
new practices and retire those that are no longer needed.

The process of extracting the practices from an existing
method or methodology is called essentialization. Essence
is designed to allow people to extract the essence of
any method or practice, so essentialization of a method
means identifying the method’s practices and practice
architecture. Moreover, each practice is described/codified
in terms of the elements in Essence and the Essence
language with new practice-specific elements added as
needed. As of this writing, the Unified Process has been
essentialized, and DSDM (dynamic systems development

25 of 31development

acmqueue | september-october 2016 26

method) is in process. Several other methods are in the
planning stages to become essentialized. Many companies
around the world are now using the Essence standard to
essentialize their methods.

The value of essentialization is that people can easily
learn what really matters about a practice, compare it with
other practices, compose it into a method (with many other
proven practices), and easily modify/change the method as
new knowledge becomes available. Applying Essence also

makes it easier to govern the methods you
have in your organization, so you create an
effective learning organization. Moreover,
an essentialized method is not just a static
description, but helps the team while they
actually use the method, allowing them
to measure progress and health at any
moment during their endeavor.

Less work has been done to capture
the domain-specific practices needed
to bridge the gap between craft and
engineering. As seen earlier, the concepts
can be illustrated using Ignite8 and other
popular methodologies, but a vibrant and
committed engineering community must
flesh out and complete the necessary set of
engineering practices.

There are two ways to accelerate the
transition:
3 Slice the popular methods into practices
and design these practices so that they can
be composed in any reasonable way teams

Some Definitions
 The terms used in
 the method space are
often ill-defined or confused.
For example, what is the
difference between a method
and a methodology? A practice
and a process?

Essence provides the
following simple definitions
used throughout this article,
but particularly relevant in the
section on Essence.
Practice: A repeatable approach
to doing something with a
specific objective in mind.
Method: The documentation
of a team’s way of working.
A method may or may not be
documented using Essence. If
it is documented in Essence,

3

26 of 31development

acmqueue | september-october 2016 27

want, maybe resulting in a method with
practices from several already- existing
methods such as DAD, SAFe, LESS, and SPS.
3 Codify existing or new practices so that
they can be composed with other practices
to form complete methods. There are
already hundreds of practices in the world,
but they are not described in a way that
allows them to be easily composed. Now
this can be done without having to describe
a complete method.

In both cases Essence is key as it
provides the foundation for this work and
for the industry to transition successfully
from craft to engineering.

CONCLUSION
As software becomes more and
more essential to the world’s day-to-
day activities, it is time for software
development to move beyond a craft-based
approach to become a true engineering
discipline.

This will require a shared base of
codified engineering practices that can be
reused across various technical domains
and various types of software; this set of
practices will grow and adapt as better
ways of developing software come along.

This is not going to happen overnight,
but it is a challenge to which our industry

then it is the composition of
the Essence kernel and a set
of practices to fulfill a specific
purpose. A method could belong
to a single team or be shared
among teams.
Essence kernel: An actionable
reference model of software
engineering that provides a
framework for the definition of
practices and the assembly of
methods.
Way of working: This is what a
team actually does. It may or
may not match their method.
Methodology: A collection of
practices known to share a
common set of values and work
well together. It’s a form of
practice library.
Practice library: A collection of
potentially competing practices.
For example, a requirements
management practice library
could contain many different
competing practices such as
declarative requirements, use
cases, and user stories.
Starter pack: A partially built,
often incomplete method that a
team can use as a framework to
seed their own method.

3

27 of 31development

acmqueue | september-october 2016 28

needs to rise as it matures and evolves into
something beyond agile and other current
practices.

We still need the dedication, innovation,
and invention of craft, embodied in:
3 Skilled professionals, passionate about
their subjects and committed to mastering
new, complex, fast-moving technologies.
3 Local experts who understand complex
problems in depth and respond rapidly
to changing needs, perceptions, and
challenges.
However, we also need the codified
knowledge and professionalism of an
engineering discipline to be able to:

3 Sustain and grow delivery capability through changes in
technologies, teams, and suppliers.
3 Predictably scale operations from early prototypes to
global rollouts.
3 Take control of investments and know when to pivot to
solutions more likely to deliver favourable returns.
3 Systematically grow the levels of reuse and
interoperability of solution components and systems.
3 Produce long-lived solutions with affordable costs of
ownership.

This is what we mean by moving from craft to
engineering—a journey that needs to be made practice
by practice, domain by domain. Thanks to Essence, that
journey can start today for all of us.

Composition: The process
of merging practices into
practices and methods. It
is important to understand
that practices are separate
concerns composed through
a merge operation and not
components interacting
through messages.
Essentialization: The process of
rendering a method or practice
down to its essence and
capturing it using the Essence
language.

3

28 of 31development

acmqueue | september-october 2016 29

References
1. Graziotin, D., Abrahamsson, P. 2013. A web-based

modeling tool for the SEMAT Essence theory of
software engineering. Journal of Open Research Software
1(1); e4; http://dx.doi.org/10.5334/jors.ad.
2. Ivar Jacobson International. 2015. Agile Essentials;

https://www.ivarjacobson.com/sites/default/files/field_
iji_file/article/agile_essentials_paper.pdf.

3. Jacobson, I., Seidewitz, E. 2014. A new software
engineering. acmqueue 12(10); http://queue.acm.org/
detail.cfm?id=2693160.

 4. McDonough, A. 2014. Munich Re and ESSENCE – Kernel
and language for software engineering methods: a case
study. Object Management Group; http://www.omg.
org/news/whitepapers/Munich_Re_Essence_Case_
Study-2014-12-01_JP.pdf.

5. Object Management Group. 2014. ESSENCE – Kernel and
language for software engineering methods (Essence);
http://www.omg.org/spec/Essence/.

6. Ralph, P., Johnson, P., Jordan, H. 2012. Report on the
first SEMAT workshop on general theory of software
engineering (GTSE 2012). ACM SIGSOFT Software
Engineering Notes 38(2): 26-28.

 7. Shaw, M. 1990. Prospects for an engineering discipline of
software. IEEE Software 7(6): 15-24.

8. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R. 2015.
Enterprise Internet of Things: Strategies and Best
Practices for Connected Products and Services. O’Reilly.

9. Stimson, R. 2015. Industrial scale agile—challenges and
solution strategies. Ivar Jacobson International; https://

29 of 31development

http://dx.doi.org/10.5334/jors.ad
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/agile_essentials_paper.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/agile_essentials_paper.pdf
http://queue.acm.org/detail.cfm?id=2693160
http://queue.acm.org/detail.cfm?id=2693160
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
http://www.omg.org/spec/Essence/
https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies

acmqueue | september-october 2016 30

www.ivarjacobson.com/publications/white-papers/
industrial-scale-agile-challenges-and-solution-strategies.

Additional Essence resources
For help in really understanding what Essence is, how it
can be used to build practices and methods, and the value
it gives when used, we recommend you read:

Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., Lidman,
S. 2012. The Essence of software engineering: the SEMAT
kernel. acmqueue 10 (10); http://queue.acm.org/detail.
cfm?id=2389616.

You can complement this by also reading:

Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., Lidman,
S. 2013. The Essence of Software Engineering: Applying the
SEMAT Kernel. Addison-Wesley.

Jacobson, I., Ng, P.-W., Spence, I., McMahon, P. E.
2014. Major-league SEMAT: why should an executive
care? acmqueue 12(2); http://queue.acm.org/detail.
cfm?id=2590809.

Jacobson, I., Spence, I., Ng, P.-W. 2013. Agile and SEMAT:
perfect partners. acmqueue 11(9); http://queue.acm.org/
detail.cfm?id=2541674.

Ivar Jacobson, Ph.D, is a father of components and
component architecture, use cases, aspect-oriented software
development, modern business engineering, the Unified
Modeling Language, and the Rational Unified Process. His
latest contribution to the software industry is a formal
practice concept that promotes practices as the “first-class
citizens” of software development and views method (or

30 of 31development

https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies
https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies
http://queue.acm.org/detail.cfm?id=2389616
http://queue.acm.org/detail.cfm?id=2389616
http://queue.acm.org/detail.cfm?id=2590809
http://queue.acm.org/detail.cfm?id=2590809
http://queue.acm.org/detail.cfm?id=2541674
http://queue.acm.org/detail.cfm?id=2541674

acmqueue | september-october 2016 31

process) simply as a composition of practices. Jacobson is
also one of the founders of the SEMAT (Software Engineering
Method and Theory) community, the mission of which is to
refound software engineering. He is the principal author of
seven influential and best-selling books and a large number
of papers. He was awarded the Gustaf Dalén medal (“the little
Nobel Prize”), and he is an honorary doctor at San Martin de
Porres University, Peru.

Ian Spence is CTO at Ivar Jacobson International and the
team leader for the development of the SEMAT (Software
Engineering Method and Theory) kernel. An experienced
coach, he has introduced hundreds of projects to iterative and
agile practices. He has also led numerous successful large-
scale transformation projects working with development
organizations of up to 5,000 people. His current interests
are agile for large projects, agile outsourcing, and driving
sustainable change with agile measurements.

Ed Seidewitz is the former CTO Americas at Ivar Jacobson
International. He is experienced in agile system architecture
and development in both the commercial and government
sectors. His work ranges from business process analysis to
system architecture to full implementation of enterprise-
class information systems, deployed in the data center or in
the cloud. He has leading expertise in UML (Unified Modeling
Language), including involvement in the continued evolution
of the standard, as well as a background in state-of-the-art
information system technologies.
Copyright © 2016 held by owners/authors. Publication rights licensed to ACM.

31 of 31development

