
Essence, Version 1.0 i

Date: 20 February 2012

Essence – Kernel and Language for
Software Engineering Methods

Initial Submission – Version 1.0

In response to: Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP
(OMG Document ad/2011-06-26)

__

OMG Document Number: ad/2011-02-04

Standard document URL: http://www.omg.org/cgi-bin/doc?ad/2011-02-04/PDF

Associated File(s)*: http://www.omg.org/cgi-bin/doc?ad/2011-02-04

Submission Team

OMG Submitters:

Fujitsu
Ivar Jacobson International AB
Model Driven Solutions

Supporting Organizations:

Florida Atlantic University
Impetus
International Business Machines Corporation
KTH Royal Institute of Technology
Metamaxim Ltd.
PEM Systems
Stiftelsen SINTEF
University of Duisburg-Essen

ii Essence, Version 1.0

Copyright © 2012, Florida Atlantic University
Copyright © 2012, Fujitsu
Copyright © 2012, Impetus
Copyright © 2012, International Business Machines Corporation
Copyright © 2012, Ivar Jacobson International AB
Copyright © 2012, KTH Royal Institute of Technology
Copyright © 2012, Metamaxim Ltd.
Copyright © 2012, PEM Systems
Copyright © 2012, Stiftelsen SINTEF
Copyright © 2012, University of Duisburg-Essen

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

Essence, Version 1.0 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv Essence, Version 1.0

Table of Contents

1 Scope .. 1

2 Conformance .. 1

3 Normative References ... 1

4 Terms and Definitions .. 2

5 Symbols ... 4

6 Additional Information .. 4
6.1 Submitting Organizations .. 4

6.2 Supporting Organizations .. 4

6.3 Submission Contacts ... 4

6.4 Acknowledgements ... 4

6.5 Status of the Document ... 5

6.6 Responses to RFP Requirements ... 5

7 Overview of the Specification ... 6
7.1 Introduction to Essence ... 6

7.2 The Key Differentiators .. 7

8 Kernel Specification .. 9
8.1 Overview ... 9

8.1.1 What is the Kernel? .. 9

8.1.2 What is in the Kernel?.. 9

8.1.3 Organizing the Kernel .. 9

8.1.4 Alphas: The Things to Work With ... 10

8.1.5 Activity Spaces: The Things to Do .. 11

8.2 The Customer Area of Concern ... 13

8.2.1 Introduction .. 13

8.2.2 Alphas .. 13

8.2.2.1 Stakeholders.. 13

8.2.2.2 Opportunity ... 16

8.2.3 Activity Spaces .. 19

8.2.3.1 Explore Possibilities ... 19

8.2.3.2 Involve the Stakeholders .. 19

Essence, Version 1.0 v

8.2.3.3 Ensure Stakeholder Satisfaction ... 20

8.2.3.4 Use the System ... 20

8.3 The Solution Area of Concern ... 21

8.3.1 Introduction .. 21

8.3.2 Alphas .. 21

8.3.2.1 Requirements .. 21

8.3.2.2 Software System ... 24

8.3.3 Activity Spaces .. 28

8.3.3.1 Understand the Requirements ... 28

8.3.3.2 Shape the System .. 28

8.3.3.3 Implement the System .. 29

8.3.3.4 Test the System ... 29

8.3.3.5 Deploy the System .. 29

8.3.3.6 Operate the System ... 29

8.4 The Endeavor Area of Concern ... 30

8.4.1 Introduction .. 30

8.4.2 Alphas .. 30

8.4.2.1 Team ... 30

8.4.2.2 Work ... 33

8.4.2.3 Way-of-Working ... 36

8.4.3 Activity Spaces .. 39

8.4.3.1 Prepare to do the Work ... 39

8.4.3.2 Coordinate Activity... 39

8.4.3.3 Support the Team .. 40

8.4.3.4 Track Progress .. 40

8.4.3.5 Stop the Work ... 40

9 Language Specification ... 42
9.1 Language Design ... 43

9.2 Specification Technique .. 43

9.2.1 Different Meta-Levels .. 43

9.2.2 Specification Format .. 44

9.2.3 Notation Used .. 44

9.3 Language Elements and Language Model .. 45

9.3.1 Layer1-Core ... 45

vi Essence, Version 1.0

9.3.1.1 Alpha .. 46

9.3.1.2 AlphaAssociation.. 47

9.3.1.3 AlphaAssociationEnd ... 47

9.3.1.4 Checkpoint .. 48

9.3.1.5 Kernel ... 48

9.3.1.6 State .. 49

9.3.1.7 StateGraph .. 50

9.3.1.8 Transition .. 51

9.3.2 Layer2-PracticeAndAlpha ... 51

9.3.2.1 Alpha .. 52

9.3.2.2 AlphaContainment .. 52

9.3.2.3 AlphaManifest .. 53

9.3.2.4 Practice ... 53

9.3.2.5 WorkProduct ... 55

9.3.3 Layer3-CompletePractice .. 55

9.3.3.1 Activity ... 57

9.3.3.2 ActivityManifest ... 58

9.3.3.3 ActivitySpace.. 59

9.3.3.4 Alpha .. 59

9.3.3.5 AlphaAssociation.. 60

9.3.3.6 AreaOfConcern ... 60

9.3.3.7 Competency .. 61

9.3.3.8 CompetencyLevel ... 62

9.3.3.9 CompletionCriterion ... 62

9.3.3.10 Kernel ... 63

9.3.3.11 Pattern ... 64

9.3.3.12 Practice ... 64

9.3.3.13 RequiredCompetency ... 66

9.3.3.14 RequiredSkill .. 67

9.3.3.15 Skill ... 67

9.3.3.16 SkillLevel.. 68

9.3.4 Layer4-MethodAndLibrary .. 68

9.3.4.1 Library .. 68

9.3.4.2 Method .. 69

9.4 Composition .. 70

Essence, Version 1.0 vii

9.4.1 Introduction .. 70

9.4.2 Graph Algebra .. 70

9.4.2.1 Variable Definition ... 70

9.4.2.2 Renaming .. 72

9.4.2.3 Merge .. 72

9.4.3 Required Primitive Operations .. 73

9.4.4 Additional Definitions in the Algebra .. 73

9.4.5 Composition of Practices ... 74

9.4.5.1 Definition of the Compose Operation .. 74

9.4.5.2 Applying the Compose Operation .. 74

9.4.6 Examples .. 74

9.4.6.1 Simple Composition ... 74

9.5 Dynamic Semantics ... 77

9.5.1 Domain classes ... 77

9.5.1.1 Recap of Meta-modeling Levels ... 77

9.5.1.2 Naming Convention .. 77

9.5.1.3 Abstract Superclasses ... 78

9.5.2 Operational Semantics ... 79

9.5.2.1 Populating the Level 0 Model .. 79

9.5.2.2 Determining the Overall State .. 79

9.5.2.3 Generating Guidance .. 80

9.5.2.4 Formal definition of the Guidance Function .. 80

9.6 Graphical Syntax ... 82

9.6.1 Specification Format .. 82

9.6.2 Relevant Symbols .. 82

9.6.3 Default Notation for Meta-Class Constructs.. 82

9.6.4 View 1: Alphas and their States ... 83

9.6.4.1 Alpha .. 83

9.6.4.2 Alpha Association ... 83

9.6.4.3 Kernel ... 84

9.6.4.4 State .. 85

9.6.4.5 Transition .. 85

9.6.4.6 Diagrams ... 86

9.6.4.7 Cards ... 87

9.6.5 View 2: Sub-Alphas and Work Products .. 89

viii Essence, Version 1.0

9.6.5.1 Work Product .. 89

9.6.5.2 Alpha Containment ... 90

9.6.5.3 Alpha Manifest ... 90

9.6.5.4 Practice ... 91

9.6.5.5 Diagrams ... 92

9.6.6 View 3: Activity Spaces and Activities .. 93

9.6.6.1 Activity ... 93

9.6.6.2 Activity Space... 93

9.6.6.3 Activity Manifest .. 93

9.6.6.4 Activity Predecessor ... 94

9.6.6.5 Competency .. 95

9.6.6.6 Diagrams ... 95

9.7 Textual Syntax ... 97

9.7.1 Rules .. 97

9.7.1.1 Root Elements... 97

9.7.1.2 Kernel Elements ... 98

9.7.1.3 Practice Elements ... 100

9.7.1.4 Auxiliary Elements ... 101

9.7.2 Examples .. 101

Annex A: Responses to RFP Requirements .. 104
A.1 Mandatory Requirements .. 104

A.2 Optional Requirements .. 110

Annex B: Issues to be Discussed ... 111
B.1 Kernel .. 111

B.1.1 Alphas .. 111

B.1.1.1 Alternatives Considered but Rejected for Opportunity .. 111

B.1.1.2 Alternatives Considered but Rejected for Stakeholders 112

B.1.1.3 Alternatives Considered but Rejected for Requirements 113

B.1.1.4 Alternatives Considered but Rejected for Software System 113

B.1.1.5 Alternatives Considered but Rejected for Work ... 114

B.1.1.6 Alternatives Considered but Rejected for Way of Working 115

B.1.1.7 Alternatives Considered but Rejected for Team ... 115

B.1.2 Activity Spaces .. 117

B.1.2.1 Alternative Names for the Activity Spaces ... 117

Essence, Version 1.0 ix

B.1.3 Alternative sets of activity spaces .. 118

B.2 SPEM 2.0 .. 119

Annex C: Practice Examples ... 120
C.1 Practices .. 120

C.1.1 Scrum ... 120

C.1.1.1 Practice ... 120

C.1.1.2 Alphas ... 121

C.1.1.3 Work Products .. 125

C.1.1.4 Activities ... 127

C.1.1.5 Roles ... 128

C.1.2 User Story .. 129

C.1.2.1 Practice ... 129

C.1.2.2 Work Products .. 130

C.1.2.3 Activities ... 130

C.1.3 Lifecycle Examples .. 130

C.1.3.1 The Unified Process Lifecycle ... 131

C.1.3.2 The Waterfall Lifecycle .. 132

C.1.3.3 A set of complementary application development lifecycles 133

C.2 Composing Practices into Methods ... 137

C.3 Enactment of Methods .. 137

x Essence, Version 1.0

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable, and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing
ROI through a full-lifecycle approach to enterprise integration that covers multiple operating
systems, programming languages, middleware and networking infrastructures, and software
development environments. OMG’s specifications include: UML® (Unified Modeling Language™);
CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.
More information on the OMG is available at http://www.omg.org/

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm
Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

 UML
 MOF
 XMI
 CWM
 Profile specifications

OMG Middleware Specifications

 CORBA/IIOP
 IDL/Language Mappings
 Specialized CORBA specifications
 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

 CORBAservices
 CORBAfacilities
 OMG Domain specifications
 OMG Embedded Intelligence specifications
 OMG Security specifications

Essence, Version 1.0 xi

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above
or by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from
ordinary English. However, these conventions are not used in tables or section headings where no
distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name
of a document, specification, or other publication.

Essence, Version 1.0 1

1 Scope
This document, entitled “Essence – Kernel and Language for Software Engineering Methods” (referred to herein as
Essence, Version 1.0.), is submitted as a response to the OMG "Foundation for the Agile Creation and Enactment of
Software Engineering Methods" (FACESEM) RFP (OMG Document ad/2011-06-26). It provides comprehensive
definitions and descriptions of the kernel and the language for software engineering methods, which address the
mandatory requirements set forth in FACESEM RFP.

The Kernel provides the common ground for defining software development practices. It includes the essential elements
that are always prevalent in every software engineering endeavor, such as Requirements, Software System, Team and
Work. These elements have states representing progress and health, so as the endeavor moves forward the states
associated with these elements progress. The Kernel among other things helps practitioners (e.g., architects, designers,
developers, testers, developers, requirements engineers, process engineers, project managers, etc.) compare methods and
make better decisions about their practices.

The Kernel is described using the Language, which defines abstract syntax, dynamic semantics, graphic syntax and
textual syntax. The Language supports composing two practices to form a new practice, and composing practices into a
method, and the enactment of methods.

This document addresses the RFP mandatory requirements of the Kernel, the Language, and Practice in the following:

 It defines the Kernel and its organizations into three areas of concerns: Customer, Solution and Endeavor.

 It defines the Kernel Alphas (i.e., the essential things to work with), and Activity Spaces (i.e., the essential
things to do).

 It describes the Language specification, Language elements and Language model.

 It defines Language Dynamic Semantics, Graphical Syntax and Textual Syntax.

 It describes examples of composing Practices into Methods and Enactment of Methods.

2 Conformance
<TBD>

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

 Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP, OMG
Document ad/2011-06-26, http://www.omg.org/cgi-bin/doc?ad/2011-06-26

 OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Document formal/2011-08-07,
http://www.omg.org/spec/MOF/2.4.1/

 OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, OMG Document formal/2011-
08-05, http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

 Diagram Definition (DD), Version 1.0 - FTF Beta 2, OMG Document ptc/2011-07-13,
http://www.omg.org/spec/DD/1.0/Beta2/

 Software & Systems Process Engineering Meta-Model Specification, Version 2.0, OMG Document
formal/2008-04-01, http://www.omg.org/spec/SPEM/2.0/

 K. Schwaber and J. Sutherland, "The Scrum Guide", Scrum.org, October 2011.
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

2 Essence, Version 1.0

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Activity

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Activity space

A placeholder for something to be done in the software engineering endeavor. A placeholder may consist of zero to many
activities.

Alpha

An essential element of the software engineering endeavor that is relevant to an assessment of the progress and health of
the endeavor. Alpha is an acronym for an Abstract-Level Progress Health Attribute

Alpha association

An alpha association defines a relationship between two alphas.

Area of concern

Elements in kernels or practices may be divided into a collection of main areas of concern that a software engineering
endeavor has to pay special attention to. All elements fall into at most one of these.

Check list item

A check list item is an item in a check list that needs to be verified in a state.

Competency

A characteristic of a stakeholder or team member that reflects the ability to do work.

A competency describes a capability to do a certain job. A competency defines a sequence of competency levels ranging
from a minimum level of competency to a maximum level. Typically, the levels range from 0 – no competence to 5 –
expert. (See Section 9.3.3.7.)

Constraints

Restrictions, policies, or regulatory requirements the team must comply with.

Invariant

An invariant is a proposition about an instance of a language element which is true if the instance is used in a language
construct as intended by the specification.

Kernel

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor.

Method

A method is a composition of practices forming a (at the desired level of abstraction) description of how an endeavor is
performed. A team’s method acts as a description of the team’s way-of- working and provides help and guidance to the
team as they perform their task. The running of a development effort is expressed by a used method instance. This
instance holds instances of alphas, work products, activities, and the like that are the outcome from the real work
performed in the development effort. The used method instance includes a reference to the defined method instance,
which is selected as the method to be followed.

Essence, Version 1.0 3

Opportunity

The set of circumstances that makes it appropriate to develop or change a software system.

Pattern

A pattern is a description of a structure in a practice.

Practice

A repeatable approach to doing something with a specific purpose in mind.

A practice provides a systematic and verifiable way of addressing a particular aspect of the work at hand. It has a clear
goal expressed in terms of the results its application will achieve. It provides guidance to not only help and guide
practitioners in what is to be done to achieve the goal but also to ensure that the goal is understood and to verify that it
has been achieved. (See Section 9.3.2.4.)

Requirements

What the software system must do to address the opportunity and satisfy the stakeholders.

Role

A set of responsibilities.

Software system

A system made up of software, hardware, and data that provides its primary value by the execution of the software.

Stakeholders

The people, groups, or organizations who affect or are affected by a software system.

State

A state expresses a situation where some condition holds.

State Graph

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states.

Team

The group of people actively engaged in the development, maintenance, delivery and support of a specific software
system.

Transition

A transition is a directed connection from one state in a state machine to a state in that state machine.

Way-of-working

The tailored set of practices and tools used by a team to guide and support their work.

Work

Work is defined as all mental and physical activities performed by the team to produce a software system.

Work item

A piece of work that should be done to complete the work. It has a concrete result and it leads to either a state change or a
confirmation of the current state. Work item may or may not have any related activity.

4 Essence, Version 1.0

5 Symbols
There are no symbols defined in this specification.

6 Additional Information

6.1 Submitting Organizations
The following companies submitted this specification:

 Fujitsu

 Ivar Jacobson International AB

 Model Driven Solutions

6.2 Supporting Organizations
The following companies supported this specification:

 Florida Atlantic University

 Impetus

 International Business Machines Corporation

 KTH Royal Institute of Technology

 Metamaxim Ltd.

 PEM Systems

 Stiftelsen SINTEF

 University of Duisburg-Essen

6.3 Submission Contacts
 Paul E. McMahon, PEM Systems, pemcmahon@aol.com

 Ian Michael Spence, Ivar Jacobson International AB, ispence@ivarjacobson.com

 Michael Striewe, University of Duisburg-Essen, michael.striewe@paluno.uni-due.de

 Ed Seidewitz, Model Driven Solutions, ed-s@modeldriven.com

 Brian Elvesæter, Stiftelsen SINTEF, brian.elvesater@sintef.no

6.4 Acknowledgements
The work is based on the Semat initiative incepted at the end of 2009, which was envisioned by Ivar Jacobson, along
with the other two Semat advisors Bertrand Meyer and Richard Soley.

Among all the people who have worked as volunteers to make this submission possible, there are in particular a few
people who have made significant contributions: Ivar Jacobson guides the work of this submission; Paul E. McMahon
coordinates this submission; Ian Michael Spence leads the architecture of the Kernel and the Kernel specification;
Michael Striewe leads the Language specification with technical leadership from Gunnar Övergaard on the metamodel,
Stefan Bylund on the graphical syntax and Ashley McNeile on the dynamic semantics.

Essence, Version 1.0 5

The following persons are members of the core team that have contributed to the content specification: Andrey A. Bayda,
Arne-Jørgen Berre, Stefan Bylund, Bob Corrick, Dave Cuningham, Brian Elvesæter, Michael Goedicke, Shihong Huang,
Ivar Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Bruce MacIsaac, Paul E. McMahon, Ashley McNeile,
Winifred Menezes, Bob Palank, Ed Seidewitz, Ed Seymour, Ian Michael Spence, Michael Striewe and Gunnar
Övergaard.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
the work behind this specification: Scott Ambler, Chris Armstrong, Jorn Bettin, Stefan Britts, Anders Caspar, Adriano
Comai, Jorge Diaz-Herrera, Jean Marie Favre, Todd Fredrickson, Carlo Alberto Furia, Tom Gilb, Carson Holmes, Capers
Jones, Melir Page Jones, Mark Kennaley, Philippe Kruchten, Yeu Wen Mak, Tom McBride, Bertrand Meyer, Hiroshi
Miyazaki, Martin Naedele, Jaime Pavlich-Mariscal, Jaana Nyfjord, Tom Rutt, Roly Stimson and Paul Szymkowiak.

6.5 Status of the Document
This document is an initial specification for review and comment by OMG members.

6.6 Responses to RFP Requirements
See Annex A.

6 Essence, Version 1.0

7 Overview of the Specification

7.1 Introduction to Essence
The work behind Essence is the Semat initiative1, 2, 3 – Software Engineering Method and Theory – that was incepted at
the end of 2009. Semat addresses the many issues that challenge the field of software engineering. For example, the
reliance on fads and fashions, the lack of a theoretical basis, the abundance of unique methods that are hard to compare,
the dearth of experimental evaluation and validation, and the gap between academic research and its practical application
in industry.

Successfully developing software systems benefit from the application of effective methods and well-defined processes,
as indicated in the RFP. Traditionally, a method definition is thought of as being instantiated, and the activities -- created
from the definition -- are executed by practitioners (e.g., analysts, developers, testers, project leads) in some predefined
order to get the result, specified by the definition. These software method engineering approaches are often considered by
development teams as being too heavyweight and inflexible. The view – “the team is the computer, the process is the
program” – is not suitable for creative work like software engineering that requires support for work, which is agile, trial-
and-error based and collaboration intensive.

Essence defines a Kernel and a Language for software engineering method specification. They are scalable, extensible,
and easy to use, and allow people to describe the essentials of their existing and future methods and practices so that they
can be compared, evaluated, tailored, used, adapted, simulated and measured by practitioners as well as taught and
researched by academics and researchers. The Kernel provides the common ground to among other things help
practitioners to compare methods and make better decisions about their practices. One of the most important features is
that the Kernel elements form the basis of a vocabulary - a map of the software engineering context. The map would be
used as a base on top of which we can define and describe any method or practice in existence or foreseen in the near
future. The Kernel should also be extensible to care for new technologies, new practices, new social working patterns,
and new research. This is also an application of the principle of separation of concerns: separating the kernel elements
from the specifics of the different methods.

The kernel elements are always prevalent in any software endeavors. They are what we already have (e.g. teams and
work), what we already do (e.g. specify and implement), and what we already produce (e.g. software systems) when we
develop software. An important goal is that the Kernel is small and light at its base but extensible to cover more advanced
uses, such as dealing with life-, safety-, business-, mission-, and security-critical systems.

The Kernel and its elements are defined using a domain-specific language (the domain being practices for software
development), which has a static base (syntax and well-formedness rules) to allow defining methods effectively, and with
additional dynamic features (operational semantics) to enable usage, and adaption. In addition, the language is also used
to define practices and methods.

Practices are described using the Kernel elements; they also allow a practice to be merged with other relevant practices to
form a higher-level “method” or composed practice. The elements in the Kernel must be defined in a way that allows
them to be extensible and tailorable supporting a wide variety of practices, methods, and development teams. The key
concepts include:

 A Method is a composition of practices. Methods are dynamic and used. Methods are not just descriptions for
developers to read, they are dynamic, supporting their day-to-day activities. This changes the conventional
definition of a method. A method is not just a description of what is expected to be done, but a description of
what is actually done.

 A Practice is a repeatable approach to doing something with a specific purpose in mind. A practice provides a
systematic and verifiable way of addressing a particular aspect of the work at hand.

1 Software Engineering Method and Theory (Semat) website: www.semat.org
2 Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Call for Action: The Semat Initiative” Dr. Dobb's Journal
December 10, 2009. Online at http://www.drdobbs.com/architecture-and-design/222001342
3 Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Software Engineering Method and Theory – A Vision Statement”,
online at http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf

Essence, Version 1.0 7

 The Kernel includes essential elements of software engineering.

 The Language is the domain-specific language to define methods, practices and the essential elements of the
kernel.

The relationships among these concepts are depicted in Figure 14.

Figure 1 – Method architecture

The language design was driven by two main objectives: making methods visible to developers and making methods
useful to developers. The first objective led to the definition of both textual and graphical syntax as well as to the
development of a concept of views in the latter. This way, developers can represent methods in exactly the way that suits
their purposes best. By providing both textual and graphical syntax, nobody is forced to use a graphical notation in
situations where textual notation is easier to handle, and vice versa. By providing a concept of views, nobody is forced to
show a complete graphical representation in situations where a partial graphical representation of a method is sufficient.

The second objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running software
engineering endeavor, a method can be consulted and it returns advice on what to do next. Moreover, a method can be
tweaked at any point in time and still returns (a possibly alternate) advice on what to do next for the same situation.

7.2 The Key Differentiators
The Essence work is built on the experiences and lessons learnt in the software development community. Some of the
key differentiators set this work apart from what has been done in the past. These are the following5:

1. Finding the essence of software engineering and finding a way to embody that essence in a kernel enables us to
build our knowledge on top of what we have known and learnt, and apply and reuse gained knowledge across
different application domains and software systems of differing complexity.

2. Work with methods in an agile way that are as close to practitioners’ practice as possible, so that they can evolve
the methods and adapt them to their particular context.

3. Apply the principle of Separate of Concerns (SoC) that puts focus on the things that matter the most.

a. Focusing on what helps the least experienced developers over what helps the more experienced
developers. This is motivated by the understanding that the majority of the development community is

4 Ivar Jacobson, Shihong Huang, Mira Kajko-Mattsson, Paul McMahon, Ed Seymour. “Semat - Three Year Vision”
Programming and Computer Software 38(1): 1-12 (2012), Springer 2012. DOI: 10.1134/S0361768812010021.
5 Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence. The Essence of Software Engineering – Applying the Semat
Kernel, in preparation to be published

8 Essence, Version 1.0

not interested in method descriptions but rather the use of the method.

b. Supporting practitioners over process engineers. This is motivated by the conviction that process
engineers should work on what practitioners’ need, based on the real work they must do on their
software endeavor.

c. Emphasizing intuitive and concrete graphical syntax over formal semantics. This does not mean that
the semantics is not as important nor as necessary. However, the description should be provided in a
language that can be easily understood by the vast developer community whose interests are to quickly
understand and use the language, rather than caring about the beauty of the language design. Hence,
Essence pays extreme attention to syntax.

d. Focusing on method use over method definition. Most previous similar efforts have paid interest to
method definition, i.e., how to capture methods. These efforts have not focused on how to support the
use of a method in software endeavors. As a result, the methods became “shelf-ware” that are not
relevant to practitioners who actually develop the software. This Essence proposal focuses on the use of
methods so that developers themselves can take control of their own way of working and allow the
method to evolve as their endeavor progresses.

For detailed descriptions of the Kernel and the Language please refer to Section 8 Kernel Specification and Section 9
Language Specification.

Essence, Version 1.0 9

8 Kernel Specification
This section presents the specification for the Software Engineering Kernel. It begins with an overview of the kernel as a
whole and its organization into the three areas of concern. This is followed by a description of each area of concern and
its contents.

8.1 Overview

8.1.1 What is the Kernel?
The Software Engineering Kernel is a stripped-down, light-weight set of definitions that captures the essence of effective,
scalable software engineering in a practice independent way.

The focus of the kernel is to define a common basis for the definition of software development practices, one that allows
them to be defined and applied independently. The practices can then be mixed and matched to create specific software
engineering methods tailored to the specific needs of a specific software engineering community, project, team or
organization. The kernel has many benefits including:

 It allows you to apply as few or as many practices as you like.

 It allows you to easily capture your current practices in a reusable and extendable way.

 It allows you to evaluate your current practices against a technique neutral control framework.

 It allows you to align and compare your on-going work and methods to a common, technique neutral framework,
and then to complement it with any missing critical practices or process elements.

 It allows you to start with a minimal method adding practices as the endeavor progresses and when you need
them.

8.1.2 What is in the Kernel?
The kernel is described using a small subset of the Kernel Language. It is organized into three areas of concern, each
containing a small number of:

 Alphas – representations of the essential things to work with. The Alphas provide descriptions of the kind of
things that a team will manage, produce, and use in the process of developing, maintaining and supporting good
software. They also act as the anchor for any additional sub-alphas and work products required by the software
engineering practices.

 Activity Spaces - representations of the essential things to do. The Activity Spaces provide descriptions of the
challenges a team faces when developing, maintaining and supporting software systems, and the kinds of things
that the team will do to meet them.

To maintain its practice independence the kernel does not include any instances of the other language elements such as
work products or activities. These only make sense within the context of a specific practice.

The best way to get an overview of the kernel as a whole is to look at the full set of Alphas and Activity Spaces and how
they are related.

8.1.3 Organizing the Kernel
The Kernel is organized into three discrete areas of concern, each focusing on a specific aspect of software engineering.
As shown in Figure 2, these are:

 Customer – This area of concern contains everything to do with the actual use and exploitation of the software
system to be produced.

 Solution – This area of concern contains everything to do the specification and development of the software

10

sy

 E
w

Througho
different
facilitate

8.1.4
The kern
software
software
in Figure

ystem.

ndeavor – Th
work.

out the diagr
color codes
the understan

Alpha
nel Alphas 1) c

engineering
engineering m

e 3.

his area of co

ams in the b
where green

nding and trac

as: The T
capture the ke
endeavor to b

methods and p

oncern contain

Figure 2 –

ody of the k
stands for c

king of which

Things to
ey concepts in
be tracked an
practices. The

Figur

ns everything

– The Three

kernel specific
customer, yell
h area of conc

o Work W
nvolved in sof
nd assessed, a
 Alphas, their

re 3 – The K

to do with th

Areas of Co

cation, the th
low for soluti
ern owns whi

With
ftware enginee
and 3) provid
r relationships

Kernel Alpha

e team, and th

oncern

ree areas of
ion, and blue
ch Alphas and

ering, 2) allow
de the commo

and their own

as

 Ess

the way that t

concern are
e for endeavo
d Activity Spa

w the progress
on ground fo
ning areas of

sence, Version

hey approach

distinguished
or. The colors
aces.

s and health o
r the definitio
concern are sh

n 1.0

h their

with
s will

of any
on of
hown

Essence, Version 1.0 11

In the customer area of concern the team needs to understand the stakeholders and the opportunity to be addressed:

1. Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the
team’s shared understanding of the stakeholders’ needs, and helps shape the requirements for the new software
system by providing justification for its development.

2. Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity and are the source of the requirements and funding for the software
system. They must be involved throughout the software engineering endeavor to support the team and ensure
that an acceptable software system is produced.

In the solution area of concern the team needs to establish a shared understanding of the requirements, and implement,
build, test, deploy and support a software system that fulfills them:

3. Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the
stakeholders and the team members, and use it to drive the development and testing of the new system.

4. Software System: A system made up of software, hardware, and data that provides its primary value by the
execution of the software.

The primary product of any software engineering endeavor, a software system can be part of a larger software,
hardware or business solution.

In the endeavor area of concern the team and its way-of-working have to be formed, and the work has to be done:

5. Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a
software system matching the requirements, and addressing the opportunity, presented by the customer. The
work is guided by the practices that make up the team’s way-of-working.

6. Team: The group of people actively engaged in the development, maintenance, delivery and support of a
specific software system.

The team plans and performs the work needed to update and change the software system.

7. Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working
environment. As their work proceeds they continually reflect on their way of working and adapt it as necessary
to their current context.

8.1.5 Activity Spaces: The Things to Do
The kernel also provides a set of activity spaces that complement the Alphas to provide an activity based view of
software engineering.

12 Essence, Version 1.0

Figure 4 – The Kernel Activity Spaces

In the customer area of concern the team has to understand the opportunity, and support and involve the stakeholders:

 Explore Possibilities: Explore the possibilities presented by the creation of a new or improved software system.
This includes the analysis of the opportunity to be addressed and the identification of the stakeholders.

 Involve the Stakeholders: Involve the stakeholders in the day-to-day activities of the team to ensure that the right
results are produced. This includes identifying and working with the stakeholder representatives to progress the
opportunity.

 Ensure Stakeholder Satisfaction: Share the results of the development work with the stakeholders to gain their
acceptance of the system produced and verify that the opportunity has been successfully addressed.

 Use the System: Use the system in a live environment to benefit the stakeholders.

In the solution area of concern the team has to develop an appropriate solution to exploit the opportunity and satisfy the
stakeholders:

 Understand the Requirements: Establish a shared understanding of what the system to be produced must do.

 Shape the system: Shape the system so that it is easy to develop, change and maintain, and can cope with current
and expected future demands. This includes the overall design and architecting of the system to be produced.

 Implement the System: Build a system by implementing, testing and integrating one or more system elements.
This includes bug fixing and unit testing

 Test the System: Verify that the system produced meets the stakeholders’ requirements.

 Deploy the System: Take the tested system and make it available for use outside the development team.

 Operate the System: Support the use of the software system in the live environment.

In the endeavor area of concern the team has to be formed and progress the work in-line with the agreed way-of-
working:

 Prepare to do the Work: Set up the team and its working environment. Understand and commit to completing
the work.

Essence, Version 1.0 13

 Coordinate Activity: Co-ordinate and direct the team’s work. This includes all on-going planning and re-
planning of the work, and adding any additional resources needed to complete the formation of the team.

 Support the Team: Help the team members to help themselves, collaborate and improve their way of working.

 Track Progress: Measure and assess the progress made by the team.

 Stop the Work: Shut-down the software engineering endeavor and the handover of the team’s responsibilities.

8.2 The Customer Area of Concern

8.2.1 Introduction
This area of concern contains everything to do with the actual use and exploitation of the software system to be produced.

Software engineering always involves at least one customer for the software that it produces. The customer perspective
must be integrated into the day-to-day work of the team to prevent an inappropriate solution from being produced.

8.2.2 Alphas
The customer area of concern contains the following Alphas:

 Stakeholders

 Opportunity

8.2.2.1 Stakeholders

Description

Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity, and are the source of the requirements for the software system. They are
involved throughout the software engineering endeavor to support the team and ensure that an acceptable software
system is produced.

States

Recognized Stakeholders have been identified.
Represented The mechanisms for involving the stakeholders are agreed and the

stakeholder representatives have been appointed.
Involved The stakeholder representatives are actively involved in the work and

fulfilling their responsibilities.
In Agreement The stakeholder representatives are in agreement.
Satisfied for Deployment The minimal expectations of the stakeholder representatives have been

achieved.
Satisfied in Use The system has met or exceeds the minimal stakeholder expectations.

Associations

provide : Opportunity Stakeholders provide Opportunity.

support : Team Stakeholders support Team.

demand : Requirements Stakeholders demand Requirements.

use and consume : Software System Stakeholders use and consume Software System.

Justification: Why Stakeholders?

Stakeholders are critical to the success of the software system and the work done to produce it. Their input and feedback
help shape the software engineering endeavor and the resulting software system.

14 Essence, Version 1.0

Progressing the Stakeholders

During the development of a software system the stakeholders progress through several state changes. As shown in
Figure 5, they are recognized, represented, involved, in agreement, satisfied for deployment and satisfied in use. These
states focus on the involvement and satisfaction of the stakeholders, from their recognition as stakeholders through their
participation in the development activities to their satisfaction with the use of the resulting software system. They
communicate the progression of the relationship with the stakeholders who are either directly involved in the software
engineering endeavor or support it by providing input and feedback.

Figure 5 – The states of the Stakeholders

As indicated in Figure 5, the first thing to do is to make sure that the stakeholders affected by the proposed software
system are recognized. This means that all the different groups of stakeholders that are, or will be, affected by the
development and operation of the software system are identified.

The number and type of stakeholder groups to be identified can vary considerably from one system to another. For
example the nature and complexity of the system and its target operating environment, and the nature and complexity of
the development organization will both affect the number of stakeholder groups affected by the system.

It is not always possible to have all the stakeholder groups involved. Focus should be primarily on the ones that are
critical to the success of the software engineering endeavor. It is these stakeholder groups that need to be directly
involved in the work. Their selection depends on the level of impact they have on the success of the software system and
the level of impact the software system has on them. The stakeholder groups that assure quality, fund, use, support and
maintain the software system should always be identified.

It is not enough to determine which stakeholder groups need to be involved, they will also need to be actively
represented. This means that there will be one or more stakeholder representatives selected to represent each stakeholder
group, or in some cases one stakeholder representative selected to represent all stakeholder groups, and help the team. To
make the contribution of the stakeholder representatives as effective as possible, they must know their roles and
responsibilities within the software engineering endeavor. Without defining clear roles and responsibilities, the software
engineering endeavor runs the risk that some of its important aspects may get unintentionally omitted or neglected.

Once the stakeholder representatives have been appointed, the represented state is achieved. Here, the stakeholder
representatives take on their agreed to responsibilities and feel fully committed to helping the new software system to

Essence, Version 1.0 15

succeed. Acting as intermediaries between their respective stakeholder groups and the team, they are now granted
authority to carry out their responsibilities on behalf of their respective stakeholder groups.

The team needs to make sure that the stakeholder representatives are actively involved in the development of the software
system. Here, the stakeholder representatives assist in the software engineering endeavor in accordance with their
responsibilities. They provide feedback and take part in decision making in a timely manner. In cases when changes need
to be done to the software system, or when the stakeholder group they represent suggests changes, the stakeholder
representatives make sure that the changes are relevant and promptly communicated to the team. No software
engineering endeavor is fixed from the beginning. Its requirements are continuously evolving as the opportunity changes
or new limitations are identified. This requires the stakeholder representatives to be actively involved throughout the
development and to be responsive to all the changes affecting their stakeholder group.

It may not always be possible to meet all the expectations of all the stakeholders. Hence, compromises will have to be
made. In the in agreement state the stakeholder representatives have identified and agreed upon a minimal set of
expectations which have to be met before the system is deployed. These expectations will be reflected in the
requirements agreed by the stakeholder representatives.

Throughout the development the stakeholder representatives provide feedback on the system’s state from the perspective
of their stakeholder groups. Once the minimal expectations of the stakeholder representatives have been achieved by the
new software system they will confirm that it is ready for operational use and the satisfied for deployment state is
achieved.

Finally, the stakeholders start to use the operational system and provide feedback on whether or not they are truly
satisfied with what has been delivered. Achieving the satisfied in use state indicates that the new system has been
successfully deployed and is delivering the expected benefits for all the stakeholder groups.

Understanding the current state of the stakeholders and how they are progressing towards being satisfied with the new
system is a critical part of any software engineering endeavor.

Checking the progress of the Stakeholders

To help assess the state and progress of the stakeholders, the following checklists are provided:

Table 1 – Checklist for Stakeholders

State Checklist

Recognized All the different groups of stakeholders that are, or will be, affected by the development
and operation of the software system are identified.

 There is agreement on the stakeholder groups to be represented. At a minimum, the
stakeholders groups that fund, use, support, and maintain the system have been
considered.

 The responsibilities of the stakeholder representatives have been defined.

Represented The stakeholder representatives have agreed to take on their responsibilities.

 The stakeholder representatives are authorized to carry out their responsibilities.

 The collaboration approach among the stakeholder representatives has been agreed.

 The stakeholder representatives support and respect the team's way of working.

Involved The stakeholder representatives assist the team in accordance with their responsibilities.

 The stakeholder representatives provide feedback and take part in decision making in a
timely manner.

 The stakeholder representatives promptly communicate changes that are relevant for their
stakeholder groups.

16 Essence, Version 1.0

In Agreement The stakeholder representatives have agreed upon their minimal expectations for the next
deployment of the new system.

 The stakeholder representatives are happy with their involvement in the work.

 The stakeholder representatives agree that their input is valued by the team and treated
with respect.

 The team members agree that their input is valued by the stakeholder representatives and
treated with respect.

 The stakeholder representatives agree with how their different priorities and perspectives
are being balanced to provide a clear direction for the team.

Satisfied for
Deployment

 The stakeholder representatives provide feedback on the system from their stakeholder
group perspective.

 The stakeholder representatives confirm that the system is ready for deployment.

Satisfied in Use Stakeholders are using the new system and providing feedback on their experiences.

 The stakeholders confirm that the new system meets their expectations.

8.2.2.2 Opportunity

Description

Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the team’s
shared understanding of the stakeholders’ needs, and helps shape the requirements for the new software system by
providing justification for its development.

States

Identified A commercial, social or business opportunity has been identified that could
be addressed by a software-based solution.

Solution Needed The need for a software-based solution has been confirmed.
Value Established The value of a successful solution has been established.
Viable It is agreed that a solution can be produced quickly and cheaply enough to

successfully address the opportunity.
Addressed A solution has been produced that demonstrably addresses the opportunity.
Benefit Accrued The operational use or sale of the solution is creating tangible benefits.

Associations

focuses : Requirements Opportunity focuses Requirements.

Justification: Why Opportunity?

Most software engineering work is initiated by the stakeholders that own and use the software system. Their inspiration is
usually some combination of problems, suggestions and directives, which taken together provide the development team
with an opportunity to create a new or improved software system. Occasionally it is the development team itself that
originates the opportunity that they must then sell to the other stakeholders to get funding and support. In many cases the
software system only provides part of the solution needed to exploit the opportunity and the development team must co-
ordinate their work with other teams to ensure that they actually deliver a useful, and deployable system.

In all cases understanding the opportunity is an essential part of software engineering, as it enables the team to:

 Identify and motivate their stakeholders.

Essence, Version 1.0 17

 Understand the value that the software system offers to the stakeholders.

 Understand why the software system is being developed.

 Understand how the success of the deployment of the software system will be judged.

 Ensure that the software system effectively addresses the needs of all the stakeholders.

It is the opportunity that unites the stakeholders and provides the motivation for producing a new or updated software
system. It is by understanding the opportunity that you can identify the value, and the desired outcome that the
stakeholders hope to realize from the use of the software system either alone or as part of a broader business, or technical
solution.

Progressing the Opportunity

During the development of a software system the opportunity progresses through several state changes. As presented in
Figure 6, these are identified, solution needed, value established, viable, addressed, and benefit accrued. These states
indicate significant points in the team’s progression of the opportunity from the initial formulation of an idea to use a
software system through to the accrual of benefit from its use. They indicate (1) when the opportunity is first identified,
(2) when the opportunity has been analyzed and it has been confirmed that a solution is needed, (3) when the
opportunity’s value is established and the desired outcomes required of the solution are clear, (4) when enough is known
about the cost of creating and using the proposed solution that it is clear that the pursuit of the opportunity is viable, (5)
when a solution is available that demonstrably shows that the opportunity has been addressed, and finally (6) when
benefit has been accrued from the use of the resulting solution.

Figure 6 – The states of the Opportunity

As shown in Figure 6, the opportunity is first identified. The opportunity could be to entertain somebody, learn
something, make some money, or even to change the world. Regardless of the kind of opportunity presented, if it is not
understood by the team it is unlikely that they will produce an appropriate software system. For software engineering
endeavors the opportunity is usually identified by the stakeholders that own and use the software system, and typically
takes the form of an idea for a way to improve the current way of doing something, increase market share or apply a new

18 Essence, Version 1.0

or innovative technology.

Different stakeholders will see the opportunity in different ways, and they will be looking for different results from any
software system produced to address it. It is important that the different stakeholder perspectives are understood and used
to increase the team’s understanding of the opportunity. Analyzing the opportunity to understand the stakeholder’s needs
and any underlying problems is essential to ensure that an appropriate system is produced and a satisfactory return-on-
investment is generated.

Once the opportunity has been analyzed, and it has been agreed that a software-based solution is needed, it is possible to
determine the value that the solution is expected to generate. Progressing the opportunity to value established is an
important step in determining whether or not to proceed with work to address the opportunity as it means that the prize is
clear to everyone involved.

The next step is to establish the viability of the opportunity. An opportunity is viable when a solution can be envisaged
that it is feasible to develop and deploy within acceptable time and cost constraints. Although addressing the opportunity
may be a very valuable thing to do it is probably not a good idea if the resources expended will be greater than the
benefits accrued.

Once it has been agreed that the opportunity is viable then the team can be confident that a software system can be
produced that will not just address the opportunity but will be acceptable to all of the stakeholders. As releases of the
software system become available their viability must be continuously checked to ensure that they meet the needs of the
stakeholders. After a suitable software system has been made available then, as far as the development team is concerned,
the opportunity has been addressed. It is now up to the users of the system to actually use it to generate value and make
sure that for this opportunity there is benefit accrued.

It is important that the team understands the current state of the opportunity so that they can ensure that an appropriate
software system is developed, one that will satisfy the stakeholders and result in a tangible benefit being accrued.

Checking the Progress of the Opportunity

To help assess the state of the opportunity and the progress being made towards its successful exploitation, the following
checklists are provided:

Table 2 – Checklist for Opportunity

State Checklist

Identified An idea for a way of improving current ways of working, increasing market share or
applying a new or innovative software system has been identified.

 At least one of the stakeholders wishes to make an investment in better understanding the
opportunity and the value associated with addressing it.

 The other stakeholders who share the opportunity have been identified.

Solution Needed The stakeholders in the opportunity and the proposed solution have been identified.

 The stakeholders' needs that generate the opportunity have been established.

 Any underlying problems and their root causes have been identified.

 It has been confirmed that a software-based solution is needed.

 At least one software-based solution has been proposed.

Value Established The value of addressing the opportunity has been quantified either in absolute terms or in
returns or savings per time period (e.g. per annum).

 The impact of the solution on the stakeholders is understood.

 The value that the software system offers to the stakeholders that fund and use the
software system is understood.

Essence, Version 1.0 19

 The success criteria by which the deployment of the software system is to be judged are
clear.

 The desired outcomes required of the solution are clear and quantified.

Viable A solution has been outlined.

 The indications are that the solution can be developed and deployed within constraints.

 The risks associated with the solution are acceptable and manageable.

 The indicative (ball-park) costs of the solution are less than the anticipated value of the
opportunity.

 The reasons for the development of a software-based solution are understood by all
members of the team.

 It is clear that the pursuit of the opportunity is viable.

Addressed A usable system that demonstrably addresses the opportunity is available.

 The stakeholders agree that the available solution is worth deploying.

 The stakeholders are satisfied that the solution produced addresses the opportunity.

Benefit Accrued The solution has started to accrue benefits for the stakeholders.

 The return-on-investment profile is at least as good as anticipated.

8.2.3 Activity Spaces
The customer area of concern contains four activity spaces that cover the discovery of the opportunity and the
involvement of the stakeholders:

8.2.3.1 Explore Possibilities

Description

Explore the possibilities presented by the creation of a new or improved software system. This includes the analysis of
the opportunity to be addressed and the identification of the stakeholders.

Explore possibilities to:

 Enable the right stakeholders to be involved.

 Understand the stakeholders’ needs.

 Identify opportunities for the use of the software system.

 Understand why the software system is needed.

 Establish the value offered by the software system.

Input: None
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Recognized, Opportunity:: Identified, Opportunity::Solution Needed,
Opportunity::Value Established.

8.2.3.2 Involve the Stakeholders

Description

Involve the stakeholders in the day-to-day activities of the team to ensure that the right results are produced. This

20 Essence, Version 1.0

includes identifying and working with the stakeholder representatives to progress the opportunity.

Involve the stakeholders to:

 Ensure the right solution is created.

 Give all stakeholder groups a voice.

 Align expectations.

 Collect feedback and generate input.

 Ensure that the solution produced provides benefit to the stakeholders.

Input: Stakeholders, Opportunity, Requirements, Software System
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Represented, Stakeholders::Involved, Stakeholders::In Agreement,
Opportunity::Viable

8.2.3.3 Ensure Stakeholder Satisfaction

Description

Share the results of the development work with the stakeholders to gain their acceptance of the system produced and
verify that the opportunity has been successfully addressed.

Ensure the satisfaction of the stakeholders to:

 Get approval for the deployment of the system.

 Validate that the system is of benefit to the stakeholders.

 Validate that the system is acceptable to the stakeholders.

 Independently verify that the system delivered is the one required.

 Confirm the expected benefit that the system will provide.

Input: Stakeholders, Opportunity, Requirements, Software System
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Satisfied for Deployment, Opportunity::Addressed

8.2.3.4 Use the System

Description

Use the system in a live environment to benefit the stakeholders.

Use the system to:

 Generate measurable benefits.

 To gather feedback from the use of the system.

 To confirm that the system meets the expectations of the stakeholders.

 To establish the return-on-investment for the system.

Input: Stakeholders, Opportunity, Requirements, Software System
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Satisfied in Use, Opportunity::Benefit Accrued

Essence, Version 1.0 21

8.3 The Solution Area of Concern

8.3.1 Introduction
This area of concern covers everything to do with the specification and development of the software system.

The goal of software engineering is to develop working software as part of the solution to some problem. Any method
adopted must describe a set of practices to help the team produce good quality software in a productive and collaborative
fashion.

8.3.2 Alphas
The solution area of concern contains the following Alphas:

 Requirements

 Software System

8.3.2.1 Requirements

Description

Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the stakeholders and
the team members, and use it to drive the development and testing of the new system.

States

Conceived The need for a new system has been agreed.
Bounded The purpose and theme of the new system are clear.
Coherent The requirements provide a coherent description of the essential

characteristics of the new system.
Sufficiently Described The requirements describe a system that is acceptable to the stakeholders.
Satisfactorily Addressed The requirements that have been addressed satisfy the need for a new system

in a way that is acceptable to the stakeholders.
Fulfilled The requirements that have been addressed fully satisfy the need for a new

system.

Associations

scopes and constrains : Work The Requirements scope and constrain the Work.

Justification: Why Requirements?

The requirements capture what the stakeholders want from the system. They define what the system must do, but not
necessarily how it must do it. They describe the value the system will provide by addressing the opportunity and how the
opportunity will be pursued by the production of a new software system. They also scope and constrain the work by
defining what needs to be achieved.

The requirements are captured as a set of requirement items. The requirement items can be communicated and recorded
in various forms and at various levels of detail. They may be communicated explicitly as a set of extensive requirements
documents or more tacitly in the form of conversations and brain-storming sessions. The requirement items themselves
are always documented and tracked. The documentation can take many forms and be as brief as a one-line user story or
as comprehensive as a use case.

As the development of the system proceeds, the requirements evolve and are constantly re-prioritized and adjusted to
reflect the changing needs of the stakeholders. Much that is implicit at first is made explicit later by adding more detailed
requirement items such as well-defined quality characteristics and test cases. This allows the requirements to act as a
verifiable specification for the software system. Regardless of how the requirement items are captured it is essential that

22

the softw
an essent
allow tra
checked
the requir

It is impo
items. If
finished,

Progres

During th
Figure 7
states foc
new set o
provision

As shown
agreed. T
that there

Before to
be bound
addressed
In the b
However
a request
items and
the new s

ware system pr
tial role in the

acking of wha
off as done, a
rements and w

ortant that the
the overall st
and 2) judge

ssing the Re

he developme
, they are co
cus on the evo
of requiremen
n of a usable s

wn in Figure 7
The stakehold
e is a need for

oo much time
ded. To boun
d, and the mec

bounded state
r, the stakehol
t qualifies as
d remove the
system and it

roduced can b
e testing of th
at has been ac
and the requir
whether or not

e overall state
tate of the req
whether or no

equirements

ent of a softw
onceived, boun
olution of the
nts as an initia
software syste

, the requirem
ders can hold d

a new softwa

is spent colle
nd the require
chanisms for m

there may s
lders now hav
a requiremen
inconsistencie
is safe to start

be shown to su
he system. As
chieved. As th
rements as a w
t work on the

e of the requir
quirements is
ot an individua

s

ware system t
nded, coheren
team’s unders
l idea for a ne
m.

Figure 7 – T

ments start in
differing view

are system and

cting and deta
ements, the ov
managing and
still be incon
e a shared und

nt item. They
es. Once the r
t implementin

uccessfully fu
s well as prov
he testing of e
whole can be
system is fini

rements is un
not understoo

al requiremen

the requireme
nt, sufficiently
standing of w
ew software sy

The states o

the conceived
ws on the ove
d a clear oppo

ailing the indi
verall scope
d accepting ne
nsistencies or
derstanding of
also understa

requirements a
ng the most im

ulfill the requi
viding a defini
each requirem
looked at to s

ished.

derstood as w
od then it wil

nt item is a req

ents progress
y described, s

what the propo
ystem through

of the Requi

d state when t
rall meaning

ortunity to be p

vidual require
of the new s

ew or changed
r ambiguities
f the purpose
and the mecha
are bounded th

mportant requir

irements. This
ition of what

ment item is c
see if the syst

well as the stat
l be impossib

quirement for t

through seve
satisfactorily
sed system mu
h their develop

irements

the need for a
of the require

pursued.

ement items th
ystem, the as

d requirement
between the

of the new sy
anisms to be
here is a share
rement items.

 Ess

s is why requ
needs to be a

completed it c
tem produced

ate of the indiv
ble to 1) tell w
this system or

eral state chan
addressed, a

must do, from t
pment to their

a new softwar
ements. Howe

he requiremen
spects of the
items all need

e individual r
ystem and can

used to evolv
ed understand

sence, Version

irements play
achieved, they
can be individ
d sufficiently f

vidual require
when the syst
r another syste

nges. As show
nd fulfilled. T
the conception
r fulfillment b

re system has
ever, they all

nts as a whole
opportunity

d to be establi
requirement i
tell whether o

ve the require
ding of the sco

n 1.0

y such
y also
dually
fulfils

ement
em is
em.

wn in
These
n of a
by the

been
agree

must
to be
ished.
items.
or not
ement
ope of

Essence, Version 1.0 23

Further elicitation, refinement, analysis, negotiation, demonstration and review of the individual requirement item leads
to a coherent set of requirements, one that clearly defines the essential characteristics of the new system. The requirement
items continue to evolve as more is learnt about the new system and its impact on its stakeholders and environment. No
matter how much the requirement items change, it is essential that they stay within the bounds of the original concept and
that they remain coherent at all times.

The continued evolution of the requirements leads to the capture of a sufficiently described set of requirements, one that
defines a system that will be acceptable to the stakeholders as, at least, an initial solution. The requirements may only
describe a partial solution; however the solution described is of sufficient value that the stakeholders would accept it for
operational use.

As the individual requirement items are implemented and a usable system is evolved, there will come a time when
enough requirements have been implemented for the new system to be worth releasing and using. In the satisfactorily
addressed state the amount of requirements that have been addressed is sufficient for the resulting system to provide clear
value to the stakeholders. If the resulting system provides a complete solution then the requirements may advance
immediately to the fulfilled state.

Usually, when the satisfactorily addressed state is achieved the resulting system provides a valuable but incomplete
solution. To fully address the opportunity, additional requirement items may have to be implemented. The shortfall may
be because an incremental approach to the delivery of the system was selected, or because the missing requirements were
difficult to identify before the system was made available for use.

In the fulfilled state enough of the requirement items have been implemented for the stakeholders to agree that the
resulting system fully satisfies the need for a new system, and that there are no outstanding requirement items preventing
the system from being considered complete.

Understanding the current and desired state of the requirements can help everyone understand what the system needs to
do and how close to complete it is.

Checking the Progress of the Requirements

To help assess the state of the requirements and the progress being made towards their successful conclusion, the
following checklists are provided:

Table 3 – Checklist for Requirements

State Checklist

Conceived The initial set of stakeholders agrees that a system is to be produced.

 The stakeholders that will use the new system are identified.

 The stakeholders that will fund the initial work on the new system are identified.

 There is a clear opportunity for the new system to address.

Bounded The stakeholders involved in developing the new system are identified.

 The stakeholders agree on the purpose of the new system.

 It is clear what success is for the new system.

 The stakeholders have a shared understanding of the extent of the proposed solution.

 The way the requirements will be described is agreed upon.

 The mechanisms for managing the requirements are in place.

 The prioritization scheme is clear.

 Constraints are identified and considered.

 Assumptions are clearly stated.

24 Essence, Version 1.0

Coherent The requirements are captured and shared with the team and the stakeholders.

 The origin of the requirements is clear.

 The rationale behind the requirements is clear.

 Conflicting requirements are identified and attended to.

 The requirements communicate the essential characteristics of the system to be delivered.

 The most important usage scenarios for the system can be explained.

 The priority of the requirements is clear.

 The impact of implementing the requirements is understood.

 The team understands what has to be delivered and agrees to deliver it.

Sufficiently
Described

 The stakeholders accept that the requirements describe an acceptable solution.

 The rate of change to the agreed requirements is relatively low and under control.

 The value provided by implementing the requirements is clear.

 The parts of the opportunity satisfied by the requirements are clear.

Satisfactorily
Addressed

 Enough of the requirements are addressed for the resulting system to be acceptable to the
stakeholders.

 The stakeholders accept the requirements as accurately reflecting what the system does
and does not do.

 The set of requirement items implemented provide clear value to the stakeholders.

 The system implementing the requirements is accepted by the stakeholders as worth
making operational.

Fulfilled The stakeholders accept the requirements as accurately capturing what they require to
fully satisfy the need for a new system.

 There are no outstanding requirement items preventing the system from being accepted as
fully satisfying the requirements.

 The system is accepted by the stakeholders as fully satisfying the requirements.

8.3.2.2 Software System

Description

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

A software system can be part of a larger software, hardware, business or social solution.

States

Architecture Selected An architecture has been selected that addresses the key technical risks and
any applicable organizational constraints.

Demonstrable An executable version of the system is available that demonstrates the
architecture is fit for purpose and supports functional and non-functional
testing.

Usable The system is usable and demonstrates all of the quality characteristics of an
operational system.

Essence, Version 1.0 25

Ready The system (as a whole) has been accepted for deployment in a live
environment.

Operational The system is in use in a live environment.
Retired The system is no longer supported.

Associations

helps to address : Opportunity Software System helps to address Opportunity.

fulfills : Requirements Software Systems fulfills Requirements.

Justification: Why Software System?

Essence uses the term software system rather than software because software engineering results in more than just a piece
of software. Whilst the value may well come from the software, a working software system depends on the combination
of software, hardware and data to fulfill the requirements.

Progressing the Software System

The life-cycle of a software system is hard to define as there can be many releases of a software system. These releases
can be worked on and used in parallel. For example one team can be working on the development of release 3, whilst
another team is making small changes to release 2, and a third team is providing support for those people still using
release 1. If we treat this software system as one entity what state is it in?

To keep things simple, Essence treats each major release as a separate software system; one that is built, released,
updated, and eventually retired. A major release encompasses significant changes to the purpose, usage, or architecture of
a software system. It can encompass many minor releases including internal releases produced for testing purposes, and
external releases produced to support incremental delivery or bug fixes. In the example above the second team would be
producing a series of minor releases (2.1, 2.2, 2.3, etc.) of their software system to allow the delivery of their small
changes.

During its development a software system progresses through several state changes. As shown in Figure 8, they are
architecture selected, demonstrable, usable, ready, operational and retired. These states provide points of stability on a
software system’s journey from its conception to its eventual retirement indicating (1) when the architecture is selected,
(2) when a demonstrable system is produced to prove the architecture and enable testing to start, (3) when the system is
extended and improved so that it becomes usable, (4) when the usable system is enhanced until it is accepted as ready for
deployment, (5) when the system is made available to the stakeholders who use it and made operational, and finally, (6)
when the system itself is retired and its support is withdrawn. These states can be applied to the initial release of the
software system or any subsequent modification or replacement.

26 Essence, Version 1.0

Figure 8 – The states of the Software System

As indicated in Figure 8, the first thing to do for any major software system release is to make sure that there is an
appropriate architecture available; one that complies with any applicable organizational constraints and addresses the key
technical risks facing the new system. Achieving this may require the creation of a brand new architecture, the
modification of an existing architecture, the selection of an existing architecture, or the simple re-use of whatever is
already in place. Regardless of the approach taken, the result is that the system progresses to the architecture selected
state.

Once the architecture had been selected, it must be shown to be fit-for-purpose by building and testing a demonstrable
version of the system. It is not sufficient to just present a set of rolling screen-shots or a stand-alone version of a multi-
user system. The system needs to be truly demonstrable exercising all of the significant characteristics of the selected
architecture. It must also be capable of supporting both functional and non-functional testing.

The demonstrable system is then evolved to become usable by adding more functionality, and fixing defects. Once the
system has achieved the usable state, it has all the qualities desired of an operational system. If it implements a sufficient
amount of the requirements, if it provides sufficient business value, and if there is an appropriate window of opportunity
for its deployment, then it can be considered to be ready for operational use.

Although, a useable system has the potential to be an operational system, there are still a few essential steps to be
performed before it is ready. The system has to be accepted for use by the stakeholders, and it has to be prepared for
deployment in the live environment. In this state, the system is typically supplemented with installation guidance,
training materials and actual training for system operation.

The system is made operational when it is installed for real use within the live environment. It is now being used to
generate value and provide benefit to its stakeholders.

Even after the software system has been made operational, development work can still continue. This may be as part of
the plans for the incremental delivery of the system or, as is more common, a response to defects and problems occurring
during the deployment and operation of the system. Support and maintenance continue until the software system is

Essence, Version 1.0 27

retired and its support is withdrawn. This may be because 1) the software system has been completely replaced by a later
generation, 2) the software system no longer has any users or, 3) it does not make business sense to continue to support it.

During the development of a major release many minor releases are often produced. For example, many teams using an
iterative approach produce a new release during every iteration whilst they keep their software system continuously in a
usable, and therefore potentially shippable, state. It is then the stakeholder representatives who decide whether it is ready
to be made operational. Obviously, this approach is not always possible, particularly if major architectural changes are
required as these often render the system unusable for a significant period of time.

Understanding the current and desired states of a software system helps everyone understand when a system is ready,
what kinds of changes can be realistically made to the system, and what kinds of work should be left to a later generation
of the software system.

Checking the Progress of the Software System

To help assess the state of a software system and the progress being made towards its successful operation, the following
checklist items are provided:

Table 4 – Checklist for Software System

State Checklist

Architecture
Selected

 The criteria to be used when selecting the architecture have been agreed on.

 Hardware platforms have been identified.

 Programming languages and technologies to be used have been selected.

 System boundary is known.

 Significant decisions about the organization of the system have been made.

 Buy, build and reuse decisions have been made.

Demonstrable Key architectural characteristics have been demonstrated.

 The system can be exercised and its performance can be measured.

 Critical hardware configurations have been demonstrated.

 Critical interfaces have been demonstrated.

 The integration with other existing systems has been demonstrated.

 The relevant stakeholders agree that the demonstrated architecture is appropriate.

Usable The system can be operated by stakeholders who use it.

 The functionality provided by the system has been tested.

 The performance of the system is acceptable to the stakeholders.

 Defect levels are acceptable to the stakeholders.

 The system is fully documented.

 Release content is known.

 The added value provided by the system is clear.

Ready Installation and other user documentation are available.

 The stakeholder representatives accept the system as fit-for-purpose.

 The stakeholder representatives want to make the system operational.

28 Essence, Version 1.0

 Operational support is in place.

Operational The system has been made available to the stakeholders intended to use it.

 At least one example of the system is fully operational.

 The system is fully supported to the agreed service levels.

Retired The system has been replaced or discontinued.

 The system is no longer supported.

 There are no “official” stakeholders who still use the system.

 Updates to the system will no longer be produced.

8.3.3 Activity Spaces
The solution area of concern contains six activity spaces that cover the capturing of the requirements and the
development of the software system.

8.3.3.1 Understand the Requirements

Description

Establish a shared understanding of what the system to be produced must do.

Understand the requirements to:

 Scope the system.

 Understand how the system will generate value.

 Agree on what the system will do.

 Identify specific ways of using and testing the system.

 Drive the development of the system.

Completion Criteria: Requirements::Conceived, Requirements::Bounded, Requirements::Coherent
Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Output: Requirements

8.3.3.2 Shape the System

Description

Shape the system so that it is easy to develop, change and maintain, and can cope with current and expected future
demands. This includes the overall design and architecting of the system to be produced.

Shape the system to:

 Structure the system and identify the key system elements.

 Assign requirements to elements of the system.

 Ensure that the architecture is suitably robust and flexible.

Completion Criteria: Requirements::Sufficient, Software System::Architecture Selected
Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Output: Requirements, Software System

Essence, Version 1.0 29

8.3.3.3 Implement the System

Description

Build a system by implementing, testing and integrating one or more system elements. This includes bug fixing and unit
testing.

Implement the system to:

 Create a working system.

 Develop, integrate and test the system elements.

 Increase the number of requirements implemented.

 Fix defects.

 Improve the system

Completion Criteria: System::Demonstrable, System::Usable, System::Ready
Input: Requirements, Software System, Way-of-Working
Output: Software System

8.3.3.4 Test the System

Description

Verify that the system produced meets the stakeholders’ requirements.

Test the system to:

 Verify that the software system matches the requirements

 Identify any defects in the software system.

Completion Criteria: Requirements::Sufficient, Requirements::Fulfilled, System:: Demonstrable, System::Usable,
System::Ready
Input: Requirements, Software System, Way-of-Working
Output: Requirements, Software System

8.3.3.5 Deploy the System

Description

Take the tested system and make it available for use outside the development team.

Deploy the system to:

 Package the software system up for delivery to the live environment.

 Make the software system operational.

Completion Criteria: System::Operational
Input: Stakeholders, Software System, Way-of-Working
Output: System

8.3.3.6 Operate the System

Description

Support the use of the software system in the live environment.

Operate the system to:

 Maintain service levels.

30 Essence, Version 1.0

 Support the stakeholders who use the system.

 Support the stakeholders who deploy, operate, and help support the system.

Completion Criteria: System::Retired
Input: Stakeholders, Opportunity, Requirements, Software System, Way-of-Working
Output: System

8.4 The Endeavor Area of Concern

8.4.1 Introduction
This area of concern contains everything to do with the team, and the way that they approach their work.

Software engineering is a significant endeavor that typically takes many weeks to complete, affects many different
people (the stakeholders) and involves a development team (rather than a single developer). Any practical method must
describe a set of practices to effectively plan, lead and monitor the efforts of the team.

8.4.2 Alphas
The endeavor area of concern contains the following Alphas:

 Team

 Work

 Way-of-Working

8.4.2.1 Team

Description

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific
software system.

The team plans and performs the work needed to create, update and/or change the software system.

States

Seeded The team’s mission is clear and the know-how needed to grow the team is in
place.

Formed The team has been populated with enough committed people to start the
mission.

Collaborating The team members are working together as one unit.
Performing The team is working effectively and efficiently.
Adjourned The team is no longer accountable for carrying out its mission.

Associations

produces : Software System Team produces Software System.

performs and plans : Work Team performs and plans Work.

applies : Way-of-Working Team applies Way-of-Working.

Justification: Why Team?

Software engineering is a team sport involving the collaborative application of many different competencies and skills.
The effectiveness of a team has a profound effect on the success of any software engineering endeavor. To achieve high
performance, team members should reflect on how well they work together, and relate this to their potential and
effectiveness in achieving their mission.

Essence, Version 1.0 31

Normally a team consists of several people. Occasionally, however, work may be undertaken by a single individual
creating software purely for their own use and entertainment. This is however a corner case which can be treated as a
team with only one team member
Progressing the Team

Teams evolve during their time together and progress through several state changes. As shown in Figure 9, the states are
seeded, formed, collaborating, performing, and adjourned. They communicate the progression of a software team on the
journey from initial conception to the completion of the mission indicating (1) when the team is seeded and the
individuals start to join the team (2) when team is formed to start the mission, (3) when the individuals start collaborating
effectively and truly become a team, (4) when the team is performing and achieves a crucial level of efficiency and
productivity, and (5) when the team is adjourned after completing its mission.

Figure 9 – The states of the Team

As shown in Figure 9, the team is first seeded. This implies defining the mission, deciding on recruitment for the
necessary skills, capabilities and responsibilities, and making sure that the conditions are right for an effective group to
come together. As the team is formed, the people in the group, and those joining it, bring the necessary skills and
experience to the team. The group becomes a team as the people begin to see how they can contribute to the work at
hand. As they discover and take account of each others’ capabilities, they start collaborating effectively and make
progress towards completing their mission.

At its peak of performing, the team shares a way of working, and plays to its strengths to complete its mission effectively
and efficiently. The performing team easily adapts to the changing context and takes appropriate measures. If a number of
people join or leave the team, or the context of the mission changes, it may revert to a previous state. Finally, if the team
has no further goals or missions to complete, it is adjourned.

It is important to understand the current state of the team so that suitable practices can be used to address the issues and
impediments being faced, and to ensure that the team focuses on working effectively and efficiently.

32 Essence, Version 1.0

Checking the Progress of the Team

To help assess the state of a team and its progress, the following checklists are provided:

Table 5 – Checklist for Team

State Checklist

Seeded The team mission has been defined in terms of the opportunities and outcomes.

 Constraints on the team's operation are known.

 Mechanisms to grow the team are in place.

 The composition of the team is defined.

 Any constraints on where and how the work is carried out are defined.

 The team's responsibilities are outlined.

 The level of team commitment is clear.

 Required competencies are identified.

 The team size is determined.

 Governance rules are defined.

 Leadership model is selected.

Formed Individual responsibilities are understood.

 Enough team members have been recruited to enable the work to progress.

 Every team member understands how the team is organized.

 All team members understand how to perform their work.

 The team members have met (perhaps virtually) and are beginning to get to know each
other

 The team members understand their responsibilities and how they align with their
competencies.

 Team members are accepting work.

 Any external collaborators (organizations, teams and individuals) are identified.

 Team communication mechanisms have been defined.

 Each team member commits to working on the team as defined.

Collaborating The team is working as one cohesive unit.

 Communication within the team is open and honest.

 The team is focused on achieving the team mission.

 The team members put the success of the team as a whole ahead of their own personal
objectives.

 The team members know each other.

Performing The team consistently meets its commitments.

 The team continuously adapts to the changing context.

Essence, Version 1.0 33

 The team identifies and addresses problems without outside help.

 The team is consistently producing high quality output.

 The team is considered a high performance team.

 Effective progress is being achieved with minimal avoidable backtracking and reworking.

 Wasted work, and the potential for wasted work are continuously eliminated.

Adjourned The team responsibilities have been handed over or fulfilled.

 The team members are available for assignment to other teams.

 No further effort is being put in by the team to complete the mission.

8.4.2.2 Work

Description

Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a software
system matching the requirement and addressing the opportunity presented by the stakeholders. The work is guided by
the practices that make up the team’s way-of-working.

States

Initiated The work has been requested.
Prepared All pre-conditions for starting the work have been met.
Started The work is proceeding.
Under Control The work is going well, risks are under control, and productivity levels are

sufficient to achieve a satisfactory result.
Concluded The work to produce the results has been concluded.
Closed All remaining housekeeping tasks have been completed and the work has

been officially closed.

Associations

updates and changes : Software
System

Work updates and changes Software System.

set up to address : Opportunity Work set up to address Opportunity.

Justification: Why Work?

The ability of team members to co-ordinate, organize, estimate, complete, and share their work has a profound effect on
meeting their commitments and delivering value to their stakeholders. Team members need to understand how to carry
out their work, and how to recognize when the work is going well.

Progressing the Work

During the development of a software system the work progresses through several state changes. As shown in Figure 10,
they are initiated, prepared, started, under control, concluded, and closed. These states provide points of stability in the
progression of the work indicating when the work is initiated and prepared, when the team is assembled and the work is
started and brought under control, when the results are achieved and the development work is concluded, and finally,
when the work itself is closed and all loose ends and outstanding work items are addressed.

34 Essence, Version 1.0

Figure 10 – The states of the Work

As indicated in Figure 10, the work is first initiated. This implies that someone defines the desired result, and makes sure
that the conditions are right for the work to be performed. If the work is not successfully initiated, it will never be
progressed and assigned to a team. As the work is prepared, commitments are made, funding and resources are secured,
the work is organized, appropriate governance policies and procedures are put in place, and priorities, constraints and
impediments are understood. Once all the pre-conditions for starting the work are addressed, the team gets the go-ahead
to get the real work started. The team starts to complete the individual work items, and builds evidence showing that the
work is under control.

There are many practices that can be used to help organize and co-ordinate the work including SCRUM, Kanban,
PMBoK, PRINCE2, Task Boards and many, many more. These typically involve breaking the work down into:

1. Smaller, more bite sized work items that can be completed one-by-one such as work packages, and tasks.

2. One or more clearly defined work periods such as phases, stages, iterations, or sprints.

The level, depth and extent of the work breakdown depends on the style and complexity of the work and on the specific
practices the team selects to help them co-ordinate, monitor, control and undertake the work.

If the team has their work under control then there will be concrete evidence that:

1. The work is going well.

2. The risks threatening a successful conclusion to the work are under control as the impact if they occur and/or the
as likelihood of them occurring have been reduced to acceptable levels.

3. The team’s productivity levels are sufficient to achieve satisfactory results within the time, budget and any other
constraints that have been placed upon the work.

Typically, once the work has been concluded and the results have been accepted by the relevant stakeholders, there
remain some final housekeeping and wrap up activities to be completed before the work itself can be closed.

If, for any reason, the work is not going well, then it may be halted, abandoned or reverted to a previous state. If the work

Essence, Version 1.0 35

is abandoned once it is started, it should still be properly closed even though it has not managed to pass through the
concluded state.

Understanding the current and desired state of the work can help the team to balance their activities, make the correct
investment decisions, nurture the work that is going well, and help or cancel the work that is going badly.

Checking the Progress of the Work

To help assess the state of the work and the progress being made towards its successful conclusion, the following
checklists are provided:

Table 6 – Checklist for Work

State Checklist

Initiated The result required of the work being initiated is clear.

 Any constraints on the work’s performance are clearly identified.

 The stakeholders that will fund the work are known.

 The initiator of the work is clearly identified.

 The stakeholders that will accept the results are known.

 The source of funding is clear.

 The priority of the work is clear.

Prepared Commitment is made.

 Cost and effort of the work are estimated.

 Resource availability is understood.

 Governance policies and procedures are clear.

 Risk exposure is understood.

 Acceptance criteria are defined and agreed with client.

 The work is broken down sufficiently for productive work to start.

 Work items have been identified and prioritized by the team and stakeholders.

 A credible plan is in place.

 Funding to start the work is in place.

 The team is ready to start the work.

 Integration and delivery points are defined.

Started Development work has been started.

 Work progress is monitored.

 The work is being broken down into actionable work items with clear definitions of done.

 Team members are accepting and progressing work items.

Under Control Work items are being completed.

 Unplanned work is under control.

 Risks are under control as the impact if they occur and the likelihood of them occurring

36 Essence, Version 1.0

have been reduced to acceptable levels.

 Estimates are revised to reflect the team’s performance.

 Measures are available to show progress and velocity.

 Re-work is under control.

 Work items are consistently completed on time and within their estimates.

Concluded All outstanding work items are administrative housekeeping or related to preparing the
next piece of work.

 Work results are being achieved.

 The client has accepted the resulting software system.

Closed Lessons learned have been itemized, recorded and discussed.

 Metrics have been made available.

 Everything has been archived.

 The budget has been reconciled and closed.

 The team has been released.

 There are no outstanding, uncompleted work items.

8.4.2.3 Way-of-Working

Description

Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working environment. As
their work proceeds they continually reflect on their way of working and adapt it to their current context, if necessary.

States

Principles Established The principles, and constraints, that shape the way-of-working are
established.

Foundation Established The key practices, and tools, that form the foundation of the way of working
are selected and ready for use.

In Use Some members of the team are using, and adapting, the way-of-working.
In Place All team members are using the way of working to accomplish their work.
Working well The team's way of working is working well for the team.
Retired The way of working is no longer in use by the team.

Associations

guides : Work Way-of-Working guides Work.

Justification: Why Way-of-Working?

Software engineering is a team sport, one that requires the whole team to collaborate effectively regardless of how the
team is organized. They need to agree on a way of working that will guide them throughout the software engineering
endeavor.

The way of working:

 Is key to enabling a team to work together effectively.

Essence,

 Fo

 En

 H

Progres

During th
presented
These sta
constrain
been iden
way of w
when it is

There ar
software
way-of-w
selection
practices
are requir

It is not e
be agreed
ready to s

To establ
together,
of the te

, Version 1.0

ocuses the tea

nables the wo

Helps the team

ssing the Wa

he course of a
d in Figure 11
ates focus on

nts that shape
ntified and int
working is in
s working wel

e many ways
engineering.

working, is to
n of appropriat

 and tools and
red to use.

enough to just
d with, and ac
start selecting

lish a natural
enable comm

eam. Howeve

am on how the

ork to be plann

, and their ass

ay-of-Worki

a software eng
, they are prin
 the way a te
the way-of-w

tegrated to est
use by the tea
ll, and (6) whe

F

s of working
As shown in

o understand
te practices an
d understandi

t understand t
ctively suppor
g the practices

way of worki
munication am
er, these prac

ey will collabo

ned and contro

sociated stakeh

ng

gineering end
nciples establi
eam establishe
working are es
tablish a found
am, (4) when
en the way of

Figure 11 – T

that the team
Figure 11, th
the team’s w

nd tools. This
ing the practic

the principles
rted by, the te
and tools that

ing the focus
mong the team
ctices and too

orate to ensure

olled.

holders, to suc

deavor the way
ished, foundat
es an effectiv
stablished, (2)
dation for the
a team’s way

f working has b

The states o

m could adopt
he first step in
working enviro

includes iden
ces and tools

and constrain
am and its sta

at will form the

should first b
members, sup

ols act as the

e success.

ccessfully fulf

y of working
tion establishe

ve way-of-wor
) when a min
evolution of t

y of working
been retired a

f the Way-o

t to meet the
n adopting a n
onment and e
tifying the con
that the team

nts that will in
akeholders. O
eir way-of-wo

be on the key
pport collabor
e foundation

fill their respo

progresses th
ed, in use, in p
rking indicati
imal number
the team’s way
is in place an

and is no longe

f-Working

ir objectives
new way-of-w
establish the
nstraints gove

m, and their sta

nform the team
nce the princi

orking.

practices and
rative working
for the team

onsibilities.

hrough severa
place, working
ing (1) when
of key practi

ay-of-working
nd in use by t
er in use by th

and establish
working, or ad
principles tha

erning the sele
akeholders, ar

m's way of wo
iples are esta

d tools; those t
g and are esse

m’s way-of-wo

l state change
g well, and re
the principle
ces and tools
, (3) when a te
the whole team
he team.

h their approa
dapting an ex
at will guide
ection of the t
re already usi

orking. These
blished the te

that bring the
ntial to the su
orking. Befor

 37

es. As
etired.
s and
have

eam's
m (5)

ach to
isting
their

eam's
ing or

must
am is

team
uccess
re the

38 Essence, Version 1.0

foundation can be assembled it is important to understand the gaps between the practices and tools needed by the team
and the practices, and tools immediately available to the team. This enables the activities needed to fill these gaps to be
planned.

Once the key practices and tools are integrated then the way-of-working’s foundation is established and the way-of-
working is ready to be trialed by the team. It will however be continuously adapted as the work progresses, and
additional practices and tools will be added as the team inspects their way-of-working and adapts it to meet their
changing circumstances.

Rather than spending more time tailoring or tuning the way-of-working it is important that the team puts it into use as
soon as possible. The way-of-working is in use as soon as any of the team members are using and adapting it as part of
completing their work. As more and more of the team start to use and benefit from the way-of-working its usage will
grow until it is firmly in place and all the team members are using it to accomplish their work. Some team members may
still need help from their teammates to understand certain aspects of the team's way of working and to make effective
progress, but the way of working is now the normal way for the team to develop software.

As the team progresses through the work, the way of working will become embedded in their activities and
collaborations to such an extent that its use, inspection and adaptation are all seen as a natural part of the way the team
works. The way-of-working is working well once it has stabilized and all team members are making progress as planned
by using and adapting it to suit their current working environment. Finally, when the way of working is no longer in use
by the team, it is retired.

Understanding the current and desired state of the team's way of working helps a team to continually improve their
performance, and adapt quickly and effectively to change.

Checking the Progress of the Way-of-Working

To help assess the current status of the way of working, the following checklists are provided:

Table 7 – Checklist for Way-of-Working

State Checklist

Principles
Established

 Principles and constraints are committed to by the team.

 Principles and constraints are agreed to by the stakeholders.

 The practice needs of the work and its stakeholders are agreed.

 The tool needs of the work and its stakeholders are agreed.

 A recommendation for the approach to be taken is available.

 The context within which the team will operate is understood.

 The constraints that apply to the selection and use of practices and tools are known.

 The constraints that govern the selection and acquisition of the team's practices and tools
are known.

Foundation
Established

 The key practices and tools that form the foundation of the way-of-working are selected.

 Enough practices for work to start are agreed to by the team.

 All non-negotiable practices and tools have been identified.

 The gaps that exist between the practices and tools that are needed and the practices and
tools that are available have been analyzed and understood.

 The capability gaps that exist between what is needed to execute the desired way of
working and the capability levels of the team have been analyzed and understood.

 The selected practices and tools have been integrated to form a usable way-of-working.

Essence, Version 1.0 39

In Use The practices and tools are being used to do real work.

 The use of the practices and tools selected is regularly inspected.

 The practices and tools are being adapted to the team’s context.

 The use of the practices and tools is supported by the team.

 Procedures are in place to handle feedback on the team’s way of working.

 The practices and tools support team working and collaboration.

In Place The practices and tools are being used by the whole team to perform their work.

 All team members have access to the practices and tools required to do their work.

 The whole team is involved in the inspection and adaptation of the way-of-working.

Working well Team members are making progress as planned by using and adapting the way-of-working
to suit their current context.

 The team naturally applies the practices without thinking about them

 The tools naturally support the way that the team works.

 The team continually tunes their use of the practices and tools.

Retired The team's way of working is no longer being used.

 Lessons learned are shared for future use.

8.4.3 Activity Spaces
The endeavor area of concern contains five activity spaces that cover the formation and support of the team, and planning
and co-coordinating the work in-line with the way of working.

8.4.3.1 Prepare to do the Work

Description

Set up the team and its working environment. Understand and commit to completing the work.

Prepare to do the work to:

 Put the initial plans in place.

 Establish the initial way of working.

 Assemble and motivate the initial project team.

 Secure funding and resources.

Completion Criteria: Team::Seeded, Way of Working::Principles Established, Way of Working:: Foundation
Established, Work::Initiated, Work::Prepared
Input: Stakeholders, Opportunity, Requirements
Output: Team, Way of Working, Work

8.4.3.2 Coordinate Activity

Description

Co-ordinate and direct the team’s work. This includes all ongoing planning and re-planning of the work, and adding any

40 Essence, Version 1.0

additional resources needed to complete the formation of the team.

Coordinate activity to:

 Select and prioritize work.

 Adapt plans to reflect results.

 Get the right people on the team.

 Ensure that objectives are met.

 Handle change.

Completion Criteria: Team::Formed, Work::Started, Work::Under Control
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

8.4.3.3 Support the Team

Description

Help the team members to help themselves, collaborate and improve their way of working.

Support the team to:

 Improve team working.

 Overcome any obstacles.

 Improve ways of working.

Completion Criteria: Team::Collaborating, Way of Working::In Use, Way of Working::In Place
Input: Team, Work, Way of Working
Output: Team, Way of Working

8.4.3.4 Track Progress

Description

Measure and assess the progress made by the team.

Track progress to:

 Evaluate the results of work done.

 Measure progress.

 Identify impediments.

Completion Criteria: Team::Performing, Way of Working::Working Well, Work::Under Control, Work::Concluded
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

8.4.3.5 Stop the Work

Description

Shut-down the software engineering endeavor and handover the team’s responsibilities.

Stop the work to:

 Close the work.

 Handover any outstanding responsibilities.

Essence, Version 1.0 41

 Handover any outstanding work items.

 Stand down the team.

 Archive all work done.

Completion Criteria: Team::Adjourned, Way of Working::Retired, Work::Closed
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

42 Essence, Version 1.0

9 Language Specification
The Essence language is based on the experience achieved in using earlier languages with a similar set of goals.
Something worked and something didn’t work so well.

We learnt that

1. Though there are many methods, the hypothesis (partly proven experimentally) is that each method is a compo-
sition of a set of practices. The number of practices is a factor 1000 less than the number of methods. The Es-
sence language needs to be able to describe methods as compositions of practices, and to define each practice at
the depth required by the developers using the practice, for instance in terms of the work products it is expected
that developers produce (possibly tacit) while doing real work.

2. Underneath all methods and practices is a common ground, now captured as the Essence kernel. The Essence
language needs to be able to define the kernel and all the elements of the kernel.

3. The discovery of the alpha construct, allowing developers to measure progress and health in a software devel-
opment endeavor. The Essence language needs to be able to define alphas whether they are elements of the ker-
nel or elements defined specific for a practice.

Figure 12 – The Method architecture of Semat

To get to this result a key idea applied throughout the language design is the principle of Separation of Concerns6.

With this background in mind, the overall goals of the Essence language are: 1) to support different levels of usages, 2) to
make it easy to work with methods to create, compose, compare and change them, and 3) to make methods support the
developers in their daily endeavors.

The first objective should allow developers to use just a subset of all language elements, a subset of all possible
representations, or a subset of all possible usages for the language. See the concept of layers and the concept of views in
the graphical syntax for answers to these challenges.

The second objective moved the graphical syntax into focus, which is considered to be more than plain representation of
constructs, but a key feature of great importance to developers.

The third objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running software
engineering endeavor, a method can be consulted and it returns advice on what to do next. Moreover, a method can be
tweaked at any point in time and still return (a possibly alternate) advice on what to do next for the same situation.

6 The Principle of Separation of Concerns online at http://en.wikipedia.org/wiki/Separation_of_concerns

Essence, Version 1.0 43

9.1 Language Design
As with most language specifications, this specification defines the elements included in the language (the abstract
syntax), some rules for how these elements should be combined to create well-formed language constructs (the static
semantics), and a description of the dynamic semantics of the language. In addition, for some of the elements or language
constructs a concrete syntax (notation) is also provided.

The abstract syntax of the language is organized in layers. Each layer contains a number of elements and their
associations. Besides the bottom layer, each layer may require elements of a lower layer to create well-formed language
constructs. No layer requires elements of a higher layer to create well-formed language constructs. No layer changes the
semantics of the elements on lower layers. However, elements defined on one layer may be extended on a higher layer to
add additional attributes or associations. The reason for designing the language in layers is to allow partial usage of the
language. The layers are the following:

 Layer 1 Core, contains the base elements to form a minimal core of the language. No practices can be expressed
using this layer, but a domain model for software engineering endeavors can be created.

 Layer 2 PracticeAndAlpha, contains the base elements to form minimal practices. No activities can be expressed
using this layer, but concrete work products can be related to abstract domain elements.

 Layer 3 CompletePractice, contains elements to enrich practices by expressing activities, skills, and patterns.

 Layer 4 MethodAndLibrary, contains elements to organize sets of practices.

The concrete syntax of the language is organized in views. Each view provides notations for a subset of elements of the
language. Views are defined and used independently from abstract syntax layers. For example, a view capable of
representing elements from abstract syntax layers 1, 2 and 3 can be used to represent a language construct just containing
elements from abstract syntax layers 1 and 2. The view is allowed to represent just a part of the whole language
construct. In the same way, a view capable of representing just elements from abstract syntax layer 1 can also be used to
represent (parts of) the same language construct. It is allowed to define and use other views than the ones defined in this
language specification.

9.2 Specification Technique
This specification is constructed using a combination of three different techniques: a meta-model, a formal language, and
natural language. The meta-model (see Section 9.3) expresses the abstract syntax and some constraints on the structural
relationships between the elements. An invariant is provided for each element that, together with the structural constraints
in the meta-model, provides the well-formedness rules of the language (the static semantics). The invariants and some
additional operations are stated using the Object Constraint Language (OCL) as the formal language used in this
document. The composition of elements (see Section 9.4) as well as the dynamic semantics (see Section 9.5) are
described using natural language (English) accompanied by a formal calculus where appropriate.

9.2.1 Different Meta-Levels
The meta-model is based upon a standard specification technique using four meta-levels of constructs (meta-classes).
These levels are:

 Level 3 – Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

 Level 2 – Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

 Level 1 – Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

 Level 0 – Occurrence: the run-time instances, i.e. these are the real-life elements in a running development

44 Essence, Version 1.0

effort.

For a more thorough description of the meta-level hierarchy, see Sections 7.9-7.11 in UML Infrastructure [UML 2011].

9.2.2 Specification Format
Within each section, there is first a brief informal description of the purpose of the elements in that language layer. This is
followed by a description of the abstract syntax of these elements together with some of the well-formedness rules, i.e.
the multiplicity of the associated elements. The abstract syntax is defined by a CMOF model [MOF 2011], the same
language used to define the UML metamodel. Each modeling construct is represented by an instance of a MOF class or
association. In this specification, this model is described by a set of UML class and package diagrams showing the
language elements and their relationships.

Following the abstract syntax is an enumeration of the elements in alphabetic order. Each concept is described according
to:

 Heading is the formal name of the language element.

 Description is a 1-2 sentence informal brief description of the element. This is intended as a quick reference for
those who want only the basic information about an element.

 Generalizations lists each of the parents (superclasses) of the language element, i.e. all elements it has
generalizations to.

 Attributes lists each of the attributes that are defined for that element. Each attribute is specified by its formal
name, its type, and multiplicity. This is followed by a textual description of the purpose and meaning of the
attribute. The following data types for attributes are used:

o String

o Boolean

o UnlimitedNatural

o GraphicalElement

 Associations lists all the association ends owned by the element. Note that this sub clause does not list the
association-owned association ends. The format for element-owned association ends is the same as the one for
attributes described above.

 Invariant describes the well-formedness rules for language constructs including this element. These are mostly
described both with an informal text and with OCL expressions.

 Additional Operations describes any additional operations needed when expressing the well-formedness rules.
These are mostly described both with an informal text and with OCL expressions. The section is only present
when there are any additional operations defined.

 Semantics provides a detailed description of the element in natural language.

9.2.3 Notation Used
The following conventions are adopted in the diagrams throughout the specification:

 All meta-class names and class names start with an uppercase letter.

 An association with one end marked by a navigability arrow means that the association is navigable in the
direction of that end, the opposite class owns that end, and the association owns the unmarked association end.

 If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

 If an association end is unlabeled, the name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable association ends
are often left unlabeled since, in general, there is no need to refer to them explicitly text. However, in some
cases, these are used in formal (OCL) expressions.)

Essence, Version 1.0 45

 If a class is presented in a diagram of a layer and the class is not defined in that layer, the full name of that class
is used. For instance, Layer1::Alpha refers to the class Alpha that belongs to package Layer1.

9.3 Language Elements and Language Model
This section provides the abstract syntax and static semantics of the language by listing and describing the elements in
the language and the relationships between them. The elements are grouped into layers and each of these layers is
described in a sub-section.

The layers are presented as packages in the diagram shown in Figure 13, and the ordering between the layers are
expressed with package import relationships between the packages. The relationship implies that all elements visible
inside a layer (a package) are visible inside the next layer (the importing package). Note that these layers are not to be
confused with the meta-levels defined in Section 9.2.1.

Figure 13 – The language is organized in four layers, the elements visible in one layer are imported
into the next layer

9.3.1 Layer1-Core
The intention of layer 1 is to provide all elements necessary to form a kernel containing alphas and alpha associations.
The elements and their relationships are presented in the diagram shown in Figure 14. A detailed definition of each of the
elements is found below.

46 Essence, Version 1.0

Figure 14 – Layer 1 elements

9.3.1.1 Alpha

Package: Layer1-Core

Description

An essential element that is relevant to an assessment of the progress and health of a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the alpha.
icon : Graphical Element [1] The icon to be used when presenting the alpha.
briefDescription : String [1] A short description of what the alpha is.
description : String [1] A more detailed description of the alpha.

Associations

stateGraph : StateGraph [0..1] The state graph contained by the alpha to describe its states.

Essence, Version 1.0 47

Invariant

true

Semantics

Alpha is an acronym that means “Abstract-Level Progress Health Attribute.”

Alphas are subjects whose evolution we want to understand, monitor, direct, and control. The major milestones of a
software engineering endeavor can be expressed in terms of the states of a collection of alphas. Thus, alpha state
progression means progression towards achieving the objectives of the software engineering endeavor.

An alpha has well-defined states, defining a controlled evolution throughout its lifecycle – from its creation to its
termination state. Each state in the state graph has a collection of checkpoints that describe what the alpha should fulfill
in this particular state. Hence it is possible to accurately plan and control their evolution through these states.

9.3.1.2 AlphaAssociation

Package: Layer1-Core

Description

An alpha association defines a relationship between two alphas.

Generalizations

N/A

Attributes

name : String [1] The name of the association.

Associations

end : AlphaAssociationEnd [2] The endpoints of the association.

Invariant

true

Semantics

Alpha associations are used to define a structure by describing relationships between its alphas. They contribute to the
creation of a domain model for software engineering endeavors.

9.3.1.3 AlphaAssociationEnd

Package: Layer1-Core

Description

An alpha association end defines the connection point between an alpha association and an alpha.

Generalizations

N/A

Attributes

isNavigable : Boolean [1] State if the association can be traversed from an instance at the opposite end
to an instance at this end.

multiplicity : UnlimitedNatural [1] State how many instances at this end can be linked to one instance at the
opposite end.

48 Essence, Version 1.0

Associations

alpha : Alpha [1] Instances attached to this end must be of the same type (or subtype) as the
alpha.

Invariant

-- The multiplicity can never be exactly zero.
multiplicity <> 0

Semantics

Alpha association ends connect the two endpoints of an alpha association to alphas. An alpha association end states
whether it is possible to navigate from an instance at the opposite side of the association to instance at the side of the
alpha association end. Furthermore, the multiplicity of the alpha association end states how many instances at the end
may be linked to one instance at the opposite end.

9.3.1.4 Checkpoint

Package: Layer1-Core

Description

A checkpoint states an item in a check list to be verified in a state.

Generalizations

N/A

Attributes

title : String [1] The title of the checkpoint.
description : String [1] A description of the checkpoint.

Associations

N/A

Invariant

true

Semantics

A checkpoint defines the statement that must be satisfied if the State associated with the checkpoint is said to be reached.

9.3.1.5 Kernel

Package: Layer1-Core

Description

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the kernel.
briefDescription : String [1] A short description of what this particular kernel is designed for.

Essence, Version 1.0 49

icon: GraphicalElement [0..1] The icon to be used when presenting the Kernel.

Associations

alpha : Alpha [*] The Alphas contained in this Kernel.

alpha association : Alpha Association
[*]

The Alpha Associations contained in this Kernel.

baseKernel : Kernel [*] The Kernels this Kernel is based on in terms of composition (see Section 9.4
for the definition of composition).

Invariant

-- The alphas associated by alpha associations are available within the kernel or
-- its base kernels.
alphaAssociation->forAll (aa | self.allAlphas ()->includes (aa.end->at (1).alpha)

and
self.allAlphas ()->includes (aa.end->at (2).alpha))

and
-- The alphas within the kernel have unique names.
self.alpha->forAll (a1, a2 | a1 <> a2 implies a1.name <> a2.name)

Additional Operations

-- Al alphas available within the kernel and its base kernels.
Kernel::allAlphas () : set(Alpha)
alpha->union (baseKernel->collect (bk | bk.allAlphas ())

Semantics

A kernel is a kind of domain model. It defines important concepts that are general to everyone when working in that
domain, like software engineering development.

A kernel may be defined using other, more basic kernels. For example, a more basic kernel may contain elements that are
meaningful to the domain of “Software Engineering” and that may be used in the specific context of “Software
Engineering for safety critical” domains as defined by a dependent kernel.

9.3.1.6 State

Package: Layer1-Core

Description

A state expresses a situation where some condition holds.

Generalizations

N/A

Attributes

name : String [1] The name of the state.
description : String [1] Some additional information about the state.
isStart : Boolean [1] The state is a start state of the state graph.
isEnd : Boolean [1] The state is an end state of the state graph.

Associations

checkpoints : Checkpoint [*] A collection of checkpoints associated with the state.

outgoing transition : Transition [0..1] 0 or 1 transition leaving the state.

50 Essence, Version 1.0

Invariant

-- If a state has no outgoing transitions, it must be an end state.
self.outgoingTransitions->size() = 0 implies self.isEnd

Semantics

A state expresses a situation where some invariant holds. This invariant may express a static situation as well as a
dynamic situation, depending on what the state graph expresses in which the state is defined.

9.3.1.7 StateGraph

Package: Layer1-Core

Description

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states. In this language, a state graph is always finite.

Generalizations

N/A

Attributes

N/A

Associations

transition : Transition[*] The transitions contained in the state graph.

state : State [1..*] The states contained in the state graph.

Invariant

-- One and only one State must be the start state of the State Graph.
self.state->exists(s | s.isStart)

and
not self.state->exists(s1,s2 | s1<>s2 and s1.isStart and s2.isStart)

and
-- One State must be the end state of the State Graph.
self.state->exists(s | s.isEnd)
 and
-- All Transitions of the State Graph must end in a State defined in the State
-- Graph.
self.transition->forAll(t | self.state->includes(t.target))

and
-- All outgoing transitions of all states in the state graph must be defined in
-- the state graph.
self.state->forAll(s | s.outgoingTransition->forAll(t | self.transition-
>includes(t)))

Semantics

A state graph describes a logical order in which a collection of states is supposed to be traversed. The state graphs are
constrained so that every state has at most one outgoing transition. Note that the state graph is an abstraction in the sense
that it does not need to capture all possible transitions. E.g., loop-backs and alternations between states may occur,
although they are not formally modeled in the graph. A state S is reached when all checkpoint of S are fulfilled and when
all predecessor states of S are also reached. The procedure for determining whether state checkpoints are fulfilled is
manual, thereby requiring human intervention.

Essence, Version 1.0 51

9.3.1.8 Transition

Package: Layer1-Core

Description

A transition is a directed connection from one state in a state graph to a state in that state graph.

Generalizations

N/A

Attributes

N/A

Associations

target : State [1] The target state of the transition.

Invariant

true

Semantics

A transition connects two states in a state graph. The target state of the transition is supposed to be the state to be reached
next, if the owning state of the transition is reached.

9.3.2 Layer2-PracticeAndAlpha
The intention of layer 2 is to provide the basic elements needed for the simplest form of practices. The elements and their
relationships are presented in the diagram shown in Figure 15. A detailed definition of each of the elements is found
below.

Figure 15 – Layer 2 elements

52 Essence, Version 1.0

9.3.2.1 Alpha

Package: Layer2-PracticeAndAlpha

Description

The alpha construct is extended with properties for being defined in a practice, for being described by work products, and
for having sub-alphas.

Generalizations

Layer1::Alpha

Attributes

N/A

Associations

superAlpha : AlphaContainment [0..1] An association referencing another alpha which is superordinate to this
alpha.

Invariant

true

Semantics

An alpha is often manifested in terms of a collection of work products. These work products are used for documentation
and presentation of the alpha. The shape of these work products may be used for concluding the state of the alpha.

Different practices may use different collections of work products to document the same alpha. For example, one practice
may document all kinds of requirements in one document, while other practices may use different types of documents.
One practice may document both the flow and the presentation of a use case in one document, while another practice may
separate the specification of the flow from the specification of the user interface and write them in different documents.

An alpha may contain a collection of other alphas. Together, these sub-alphas contribute to the state of the superordinate
alpha. However, there is no explicit relationship between the states of the subordinate alphas and the state of their
superordinate alpha.

9.3.2.2 AlphaContainment

Package: Layer2-PracticeAndAlpha

Description

An alpha containment is a relationship between a sub-alpha and its superordinate alpha.

Generalizations

N/A

Attributes

multiplicity : UnlimitedNatural [1] How many instances of the sub-alpha there should be in one instance of the
superordinate alpha.

Associations

superAlpha : Alpha [1] The superordinate alpha.

Essence, Version 1.0 53

Invariant

true

Semantics

An alpha may be defined as a sub-alpha of another alpha (the superordinate alpha). The relationship between the two is
expressed with an alpha containment. A sub-alpha is considered to be part of the superordinate alpha and to contribute to
its state.

The multiplicity of the sub-alpha, i.e. how many instances of the sub-alpha there should be in one instance of the
superordinate alpha, is defined on the relationship.

9.3.2.3 AlphaManifest

Package: Layer2-PracticeAndAlpha

Description

An alpha manifest binds a work product to an alpha.

Generalizations

N/A

Attributes

multiplicity : UnlimitedNatural [1] The possible number of instances of the work product describing one
instance of the alpha.

Associations

alpha : Alpha [1] The alpha bound by this manifest.
workProduct : WorkProduct [1] The work product bound by this manifest.

Invariant

true

Semantics

Alpha manifest represents a tri-nary relationship. It is a relationship from a practice to a work product which is used for
describing an alpha. Several work products may be bound to the same alpha, i.e. there may be multiple alpha manifests
within a practice binding a specific alpha to different work products.

For each alpha manifest, there is a multiplicity stating how many instances there should be of the associated work
product describing one instance of the alpha.

9.3.2.4 Practice

Package: Layer2-PracticeAndAlpha

Description

A practice is a description on how to handle a specific aspect of a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the practice.

54 Essence, Version 1.0

icon : GraphicalElement [0..1] The icon to be used when presenting the practice.
briefDescription : String [1] A short description of what the practice is.
description : String [1] A thorough description of what the practice is.

Associations

alpha : Alpha [*] A collection of alphas defined in this practice.
alphaManifest : AlphaManifest [*] A collection of alpha manifests defined in this practice.
workProduct : WorkProduct [*] A collection of work products defined in this practice.
basePractice : Practice [*] The set of Practices from which this Practice is composed (see Section 9.4

for the definition of composition).
baseKernel : Kernel [*] The Kernels this Practice is based on in terms of composition (see Section

9.4 for the definition of composition).

Invariant

-- The alphas and the work products associated by the alpha manifests are
-- available within the practice, its base practices, or base kernels.
alphaManifest->forAll (am | self.allAlphas ()->includes (am.alpha) and
self.allWorkProducts ()->includes (am.workProduct)

and
-- The alphas have unique names within the practice.
self.workProduct->forAll (wp1, wp2 | wp1 <> wp2 implies wp1.name <> wp2.name)

Additional Operations

-- All the alphas available within the practice, its base practices, or base
-- kernels.
Practice::allAlphas () : set(Alpha)
alpha->union (basePractice->collect (bp | bp.allAlphas () ->union (baseKernel-
>collect (bk | bk.allAlphas ()))
-- All the work products available within the practice, its base practices, or
-- base kernels.
Practice::allWorkProducts () : set(WorkProduct)
workProduct->union (basePractice->collect (bp | bp.workProduct ())

Semantics

A practice addresses a specific aspect of development or teamwork. It provides the guidance to characterize the problem,
the strategy to solve the problem, and instructions to verify that the problem has indeed been addressed. It also describes
what supporting evidence, if any, is needed and how to make the strategy work in real life.

A practice includes its own verification, providing it with a clear goal and a way of measuring its success in achieving
that goal.

As might be expected, there are several different kinds of practices to address all different areas of development and
teamwork, including (but not limited to):

 Development Practices – such as practices for developing components, designing user interfaces, establishing an
architecture, planning and assessing iterations, or estimating effort.

 Social Practices – such as practices on teamwork, collaboration, or communication.

 Organizational Practices – such as practices on milestones, gateway reviews, or financial controls.

Except trivial examples, a practice does not capture all aspects of how to perform a development effort. Instead, the
practice addresses only one aspect of it. To achieve a complete description, practices can be composed. The result of
composing two practices is another practice capturing all aspect of the composed ones. In this way, more complete and
powerful practices can be created, eventually ending up with one that describes how an effort is to be performed, i.e. a
method.

The definition of a practice may be based on elements defined in a kernel. These elements, like alphas, may be used (and
extended) when defining elements specific to the practice, like work products.

Essence, Version 1.0 55

A practice may be a composition of other practices. All elements of the other practices are merged and the result becomes
a new practice (see Section 9.4 for the definition of composition).

Simple practices may contain only alphas and work products. In subsequent layers, additional properties will be added to
the practice construct.

9.3.2.5 WorkProduct

Package: Layer2-PracticeAndAlpha

Description

A work product is an artifact of value and relevance for a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the work product.
icon : GraphicalElement [0..1] The icon to be used when presenting the work product.
briefDescription : String [1] A short description of what the work product is.
content : String [1] The content of the work product.
levelOfDetail : String [1] A description of how detailed the description of the work product should be.

Associations

levelOfCompleteness: StateGraph [0..1] The state graph contained by the work product to describe its states.

Invariant

true

Semantics

A work product is a concrete representation of an alpha. It may take several work products to describe the alpha from all
different aspects.

A work product can be of many different types such as models, documents, specifications, code, tests, executables,
spreadsheets, as well as other types of artifacts. In fact, some work products may even be tacit (conversations, memories,
and other intangibles).

Work products may be created, modified, used, or deleted during an endeavor. Some work products constitute the result
of (the deliverables from) the endeavor and some are used as input to the endeavor.

A work product could be described at different levels of details, like overview, user level, or all details level, and during
its evolvement it may have reached different states of completeness, like draft, outline, complete, and approved.

9.3.3 Layer3-CompletePractice
The intention of layer 3 is to provide additional elements to deal with more advanced practices. The elements and their
relationships are presented in the diagrams shown in Figure 16, Figure 17, and Figure 18. A detailed definition of each of
the elements is found below.

56 Essence, Version 1.0

Figure 16 – Layer 3 Activity Space and Activity elements

Figure 17 – Layer 3 Competency and Skill elements

Essence, Version 1.0 57

Figure 18 – Layer 3 Pattern elements

9.3.3.1 Activity

Package: Layer3-CompletePractice

Description

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Generalizations

N/A

Attributes

name : String [1] The name of the activity.
icon : GraphicalElement [1] The icon to be used when presenting the activity.
briefDescription : String [1] A short description of what the activity is.
approach : String [1..*] Different approaches to accomplish the activity.

Associations

name : String [1] The name of the activity.
completionCriterion : CompletionCriterion [1..*] A collection of completion criteria that have to be fulfilled for

considering the activity completed.
requiredCompetency : RequiredCompetency [*] A collection of competencies required for completing this activity

successfully.
requiredSkill : RequiredSkill [*] A collection of skills required for completing this activity

successfully.
inputAlpha : Alpha [*] A collection of Alphas which need to be present in order to start

this activity.
outputAlpha : Alpha [*] A collection of Alphas that will be present when this activity is

completed successfully.
inputWorkProduct : WorkProduct [*] A collection of Work Products which need to be present in order

58 Essence, Version 1.0

to start this activity.
outputWorkProduct : WorkProduct [*] A collection of Work Products that will be present when this

activity is completed successfully.
predecessor : Activity [*] A collection of Activities supposed to precede this Activity.

Invariant

-- Each completion criterion must refer to a state of an output alpha of the
-- activity.
self.completionCriterion->forAll (c | self.outputAlpha->exists (a |
a.stateGraph.state->includes(c.reachedState)))

and
-- The required skills of the activity should be part of the possible skills of
-- the activity’s required competencies.
self.requiredSkill->forAll(rs | self.requiredCompetency->exists(rc |
rc.requiredCompetency->exists(pl | pl.requiredSkill.includes(rs)))

Semantics

An activity describes some work to be performed. It can take alphas or work products as input to the work, and alphas or
work products may be created or updated during the activity. However, it is not defined when these have been created or
updated; only that this has been done when the activity is completed.

The activity is considered completed if all its completion criteria are fulfilled. However, it is not specified that this has to
happen due to performing this activity. The activity is thus also considered completed if all completion criteria are
fulfilled for other reasons.

The activity is a manifestation of (part of) an activity space through the activity manifest. The activities filling the same
activity space jointly contribute to the achievement of the completion criteria of the activity space. Activities may define
different approaches to reach a goal which may imply restrictions on how different activities may be combined. One
activity may be bound to multiple activity spaces within a practice.

The activity may have predecessors which are recommended to be completed before the activity can be completed as
well. However, this association is just considered as a hint to the performer(s) of the activity. As stated above, the activity
is considered completed if all completion criteria are fulfilled, even if some predecessor is not completed for any reason.

To be likely to succeed with the activity, the performer(s) of the activity must have at least the competencies and skills
required by the activity to be able to perform that activity with a satisfactory result.

9.3.3.2 ActivityManifest

Package: Layer3-CompletePractice

Description

An activity manifest binds a collection of activities to an activity space.

Generalizations

N/A

Attributes

N/A

Associations

activitySpace : ActivitySpace [1] The activity space filled by this manifest.
activity : Activity [1..*] The activities bound to the activity space.

Invariant

true

Essence, Version 1.0 59

Semantics

Activity manifest represents a tri-nary relationship. It states which activities are bound to which activity space in a
practice.

9.3.3.3 ActivitySpace

Package: Layer3-CompletePractice

Description

A placeholder for something to be done in the software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the activity space.
icon : GraphicalElement [1] The icon to be used when presenting the activity space.
briefDescription : String [1] A short description of what the activity space is.

Associations

requiredCompetency : RequiredCompetency [1..*] A collection of competencies and competency levels required to
be successful in fulfilling the objectives of this activity space.

completionCriterion : CompletionCriterion [1..*] A collection of completion criteria that have to be fulfilled for
considering the objectives of this activity space to be fulfilled.

input : Alpha[*] A collection of alphas that have to be present to be successful in
fulfilling the objectives of this activity space.

output : Alpha [*] A collection of alphas that will be present when the objectives of
this activity space have been fulfilled.

concernType : AreaOfConcern [0..1] The area of concern this activity space belongs to.

Invariant

-- Each completion criterion must refer to a state of an output alpha of the
-- activity space.
self.completionCriterion->forAll (c | self.output->exists (a |
a.stateGraph.state->includes(c.reachedState)

Semantics

An activity space is a high-level abstraction of something to be done. It uses a (possibly empty) collection of alphas as
input to the work. When the work is concluded a collection of alphas (possibly some of the alphas used as input) has been
updated. The update may cause a change of the alpha’s state. When the update and the state change of an alpha takes
place is not defined; only that it has been done when the activity space is completed.

What should have been accomplished when the work performed in the activity space is completed, i.e. the activity
space’s completion criteria, is expressed in terms of which states the output alphas should have reached. Using the
checkpoints for the states of alphas, it is at the discretion of the team to decide when a state change has occurred and thus
the completion criteria of the activity space have been met.

9.3.3.4 Alpha

Package: Layer3-CompletePractice

Description

The alpha construct is extended with properties for being used as input to and output from activities and activity spaces,

60 Essence, Version 1.0

and for having an area of concern.

Generalizations

Layer2::Alpha

Attributes

N/A

Associations

concernType : AreaOfConcern [0..1] The area of concern the alpha belongs to.

Invariant

true

Semantics

An alpha may be used as input to an activity space in which the content of the alpha is used when performing the work of
the activity space. The alpha (and its state) may be created or updated during the performance of activities in an activity
space. An alpha may belong to an area of concern.

9.3.3.5 AlphaAssociation

Package: Layer3-CompletePractice

Description

The alpha association construct is extended with properties for having an area of concern.

Generalizations

Layer1::AlphaAssociation

Attributes

N/A

Associations

concernType : AreaOfConcern [0..1] The area of concern the alpha association belongs to.

Invariant

true

Semantics

An alpha association may belong to an area of concern.

9.3.3.6 AreaOfConcern

Package: Layer3-CompletePractice

Description

Elements in kernels or practices may be divided into a collection of main areas of concern that a software engineering
endeavor has to pay special attention to. All elements fall into at most one of these main areas of concern.

Essence, Version 1.0 61

Generalizations

N/A

Attributes

concernType : String [1] The type of the area of concern.
definition : String [1] A description of the area of concern.
icon : GraphicalElement [1] The icon to be used when presenting this area of concern.

Associations

N/A

Invariant

true

Semantics

Area of concern is a grouping facility to organize the elements in kernels and practices. They provide an overview on
different aspects of software engineering endeavors, but do not imply any fixed semantics.

As already described in Section 8.1.3 there are three main areas of concern that software engineering endeavors have to
pay special attention to:

 Customer space – in every software engineering endeavor, there are stakeholders to satisfy. These have needs,
problems to solve, and money to spend on solving them.

 Solution space – on the way to executable software, we need to consider the specification and ensure that the
implementation meets requirements. The software needs to be thoroughly tested and verified before we can hand
it over to the end-users.

 Endeavor space – there is work to be done and we need a team to do it. They will likely need some direction and
support. Work needs to be planned and progress must be monitored.

9.3.3.7 Competency

Package: Layer3-CompletePractice

Description

A competency describes a capability to do a certain job.

Generalizations

N/A

Attributes

name : String [1] The name of the competency.
icon : GraphicalElement [1] The icon to be used when presenting the competency.
briefDescription : String [1] A short description of what the competency is.

Associations

possibleLevel : CompetencyLevel [*] A collection of levels defined for this competency.
concernType : AreaOfConcern [0..1] The area of concern the competency belongs to.

Invariant

-- The possible levels are distinct
self.possibleLevel->forAll (l1, l2 | l1 <> l2 implies l1.level <> l2.level)

62 Essence, Version 1.0

Semantics

A competency is used for defining a capability of being able to work in a specific area. In the same way as an Alpha is an
abstract thing to monitor and control and an Activity Space is an abstraction of what to do, a Competency is an abstract
collection of knowledge, abilities and attitudes. Examples for Competencies that could be defined in a Kernel include
“Analyst”, “Developer”, or “Tester”.

A competency defines a sequence of competency levels ranging from a minimum level of competency to a maximum
level. Typically, the levels range from 0 – no competence to 5 – expert.

9.3.3.8 CompetencyLevel

Package: Layer3-CompletePractice

Description

A competency level defines a level of how competent or able someone is in a subject.

Generalizations

N/A

Attributes

name : String [1] The name of the competency level.
briefDescription : String [1] A short description of what the competency level is.
level : Integer [1] A numeric indicator for the level, where a higher number means more/better

competence.

Associations

requiredSkill : RequiredSkill [*] The skills required at this level.

Invariant

true

Semantics

Competency levels are used to create a range of abilities from poor to excellent or small scale to large scale. While a
competency describes what capabilities are needed (such as “Analyst” or “Developer”), a competency level adds a
qualitative grading to them (such as “basic”, “advanced”, or “excellent”).

Particular skills can be associated with a Competency level if some particular level in that skill is required to reach this
Competency level. For example there may be no particular skills be associated with the “basic” level of “Developer”, but
on an “advanced” level some skills in communicating in English are required to be able to read and write code
comments. Most likely, particular skills are associated with Competency levels defined in a Practice, but not in the
Kernel.

9.3.3.9 CompletionCriterion

Package: Layer3-CompletePractice

Description

A completion criterion defines which state an alpha or work product should have reached in order to consider an activity
or activity space completed.

Generalizations

N/A

Essence, Version 1.0 63

Attributes

description : String [1] A description of the criterion which is to be reached at the target state.

Associations

reachedState : State [1] A state to be reached.

Invariant

true

Semantics

The work of an activity or activity space is considered complete when the associated completion criteria are fulfilled, i.e.
when the alpha states and work product states defined by the completion criteria are reached.

9.3.3.10 Kernel

Package: Layer3-CompletePractice

Description

The kernel construct is extended with properties for containing activity spaces and competencies.

Generalizations

Layer1::Kernel

Attributes

N/A

Associations

competency : Competency [*] A collection of competencies defined in the kernel.
activitySpace : ActivitySpace [*] A collection of activity spaces defined in the kernel.

Invariant

-- All input and out alphas of the activity spaces are available within the
-- kernel or its bse kernels.
activitySpace->forAll (as | as.input->forAll (i | self.allAlphas ()->includes (i)
)

and
as.output->forAll (o | self.allAlphas ()->includes (o)))

and
-- The reached states of the activity spaces’ completions criteria are possible
-- states of the activity spaces’ output alphas.
activitySpace->forAll (as | as.completionCriterion.reachedState (rs |
as.output.stateGraph.state->includes (rs)))

and
-- The required competencies of the activity spaces are available within the
-- kernel or its base kernels.
activitySpace->forAll (as | as.requiredCompetency->forAll (rc |
self.allCompetencies ()->includes (rc)))

and
-- The competencies within the kernel have unique names.
self.competency->forAll (c1, c2 | c1 <> c2 implies c1.name <> c2.name)

and
-- The activity spaces within the kernel have unique names.
self.activitySpace->forAll (a1, a2 | a1 <> a2 implies a1.name <> a2.name)

64 Essence, Version 1.0

Additional Operations

-- All activity spaces within the kernel or its base kernels.
Kernel::allActivitySpaces () : set(ActivitySpace)
activitySpace->union (baseKernel->collect (bk | bk.allActivitySpaces ())
-- All competencies within the kernel or its base kernels.
Kernel::allCompetencies () : set(ActivitySpace)
competency->union (baseKernel->collect (bk | bk.allCompetencies ())

Semantics

A kernel can contain not only alpha and alpha associations, but also activity spaces and competencies.

9.3.3.11 Pattern

Package: Layer3-CompletePractice

Description

A pattern is a definition of a pragmatic relationship among elements in a practice.

Generalizations

N/A

Attributes

kind : String [1] A description of the what kind of pattern the element defines.
description : String [1] A description of the pattern.

Associations

activity : Activity [*] The activities participating in the pattern.
activitySpace : ActivitySpace [*] The activity spaces participating in the pattern.
alpha : Alpha [*] The alphas participating in the pattern.
workProduct : WorkProduct [*] The work products participating in the pattern.
state : State [*] The states participating in the pattern.

Invariant

true

Semantics

Pattern is a general mechanism for defining a structure in a practice. It has a type which describes what kind of pattern it
is, like a role or a phase. Typically, the pattern references other elements in the practice. For example, a role may be
defined by referencing required competencies, having responsibility of work products, and participation in activities.
Another example could be a phase which groups activity spaces that should be performed during that phase.

9.3.3.12 Practice

Package: Layer3-CompletePractice

Description

The practice construct is extended with properties for containing activities, activity spaces, activity manifests, and
competencies.

Generalizations

Layer2::Practice

Essence, Version 1.0 65

Attributes

N/A

Associations

activity : Activity [*] A collection of activities defined in this practice.
activitySpace : ActivitySpace [*] A collection of activity spaces defined in this practice.
activityManifest : ActivityManifest [*] A collection of activity manifests defined in this practice.
competency : Competency [*] A collection of competencies defined in this practice.
skill : Skill [*] A collection of skills defined in this practice.
pattern : Pattern [*] A collection of patterns defined in this practice.

Invariant

-- The predecessors of an activity are available within the pracice, its base
-- practices, or its base kernels.
activity->forAll (a | a.predecessor->forAll (p | self.allActivities ()->includes
(p)))

and
-- The activities and the activity spaces associated by the activity manifests of
-- the practice are all available within the practice, its base practices, or its
-- base kernels.
activityManifest->forAll (am | am.activity-forAll (a | self.allActivities ()-
>includes (a)) and self.allActivitySpaces ()->includes (am.activitySpace))

and
-- All activities’ input and output work products and input and output alphas are
-- available within the practice, its base practices, or its base kernels.
activity->forAll (a | a.inputWorkProduct->forAll (iwp | self.allWorkProducts ()-
>includes (iwp))

and
a.outputWorkProduct->forAll (owp | self.allWorkProducts ()->includes (owp))

and
a.inputAlpha->forAll (ia | self.allAlphas ()->includes (ia))

and
a.outputAlpha->forAll (oa | self.allAlphas ()->includes (oa)))

and
-- All reached states of the activities’completion criteria are included in the
-- activities’ output alphas possible states.
activity->forAll (a | a.completionCriterion.reachedState (rs |
a.outputAlpha.stateGraph.state->includes (rs)))

and
-- The activities’ required competencies are available within the practice, its
-- base pracices, or its base kernels.
activity.requiredCompetency->forAll (rc | self.allCompetencies ()->includes (rc))

and
-- The activities’ required skills are available within the practice, its base
-- pracices, or its base kernels.
activity.requiredSkill->forAll (rs | self.allSkills ()->includes (rs))

and
-- The patterns’ activity spaces, activities, alphas, and work products are
-- available within the practice, its base practices, or base kernels.
pattern->forAll (p | p.activitySpace->forAll (as | self.allActivitySpaces ()-
>includes (as))

and
p.activity->forAll (a | self.allActivities ()->includes (a))

and
p.alpha->forAll (a | self.allAlphas ()->includes (a))

and
p.workProduct->forAll (wp | self.allWorkProducts ()->includes (wp)))

and
-- All activities within the practice have unique names.
self.activity->forAll (a1, a2 | a1 <> a2 implies a1.name <> a2.name)

and

66 Essence, Version 1.0

-- All activity spaces within the practice have unique names.
self.activitySpace->forAll (as1, as2 | as1 <> as2 implies as1.name <> as2.name)

and
-- All competencies within the practice have unique names.
self.competency->forAll (c1, c2 | c1 <> c2 implies c1.name <> c2.name)

and
-- All skills within the practice have unique names.
self.skill->forAll (s1, s2 | s1 <> s2 implies s1.name <> s2.name)

Additional Operations

-- All activity spaces within the practice, its base practices, and base kernels.
Practice::allActivitySpaces () : set(ActivitySpace)
activitySpaces->union (basePractice->collect (bp | bp.allActivitySpaces () -
>union (baseKernel->collect (bk | bk.allActivitySpaces ()))
-- All activities within the practice, its base practices, and base kernels.
Practice::allActivites () : set(Activity)
activity->union (basePractice->collect (bp | bp.allActivities ())
-- All competencies within the practice, its base practices, and base kernels.
Practice::allCompetencies () : set(Competency)
competency->union (basePractice->collect (bp | bp.allCompetencies ())
-- All skills within the practice, its base practices, and base kernels.
Practice::allSkills () : set(Skill)
skill->union (basePractice->collect (bp | bp.allSkills ())

Semantics

A practice could contain not only alphas, alpha associations, alpha manifests, and work products, but also activities,
activity spaces, activity manifests, competencies, and skills.

9.3.3.13 RequiredCompetency

Package: Layer3-CompletePractice

Description

A required competency states which competency level is needed to perform an activity.

Generalizations

N/A

Attributes

N/A

Associations

requiredLevel : CompetencyLevel [1] The required level.
requiredCompetency : Competency [1] The required competency.

Invariant

-- The competency level is included the competency definition.
self.requiredCompetency.possibleLevel->includes(self.requiredLevel)

Semantics

An activity fills an activity space that requires a competency. The specific competency level within that competency the
particular activity requires is expressed by a required competency.

Essence, Version 1.0 67

9.3.3.14 RequiredSkill

Package: Layer3-CompletePractice

Description

A required skill states which skill level is needed to perform an activity.

Generalizations

N/A

Attributes

N/A

Associations

requiredLevel : SkillLevel [1] The required level.
requiredSkill : Skill [1] The required skill.

Invariant

-- The competency level is included the competency definition.
self.requiredSkill.possibleLevel->includes(self.requiredLevel)

Semantics

To perform an activity successfully, a collection of skills is required. For each of these skills the necessary level is stated.

9.3.3.15 Skill

Package: Layer3-CompletePractice

Description

A skill describes the ability to use one's knowledge effectively in execution.

Generalizations

N/A

Attributes

name : String [1] The name of the skill.
briefDescription : String [1] A short description of what the skill is.
icon : GraphicalElement [1] The icon to be used when presenting the skill.

Associations

possibleLevel : SkillLevel [*] A collection of levels defined for this skill.
concernType : AreaOfConcern [0..1] The area of concern the skill belongs to.

Invariant

-- The possible skill levels are distinct
self.possibleLevel->forAll (pl1, pl2 | pl1 <> pl2 implies pl1.level <> pl2.level)

Semantics

A skill is a learned power of doing something effectively. In contrast to Competencies, a skill is more tangible and can
possibly be proven by some certificate. Examples for skills include “Communicating in English”, “Programming in
Java”, or “Using version control systems”.

68 Essence, Version 1.0

A skill defines a sequence of skill levels. Typically, the level ranges from 0 – no skill to 5 – excellent.

9.3.3.16 SkillLevel

Package: Layer3-CompletePractice

Description

A skill level defines a level of skill someone is in a subject.

Generalizations

N/A

Attributes

name : String [1] The name of the skill level.
briefDescription : String [1] A short description of what the skill level is.
level : Integer [1] A numeric indicator for the level, where a higher number means more/better

skill.

Associations

N/A

Invariant

true

Semantics

Skill levels are used to create a range of abilities from poor to excellent skills. While a skill describes what abilities are
needed, such as “Programming in Java” or “Communicating in English,” a skill level adds a qualitative grading to them,
such as “beginner,” “average,” or “excellent.”

9.3.4 Layer4-MethodAndLibrary
The intention of layer 4 is to provide facilities to compose methods out of practices. The elements and their relationships
are presented in the diagram shown in Figure 19. A detailed definition of each of the elements is found below.

Figure 19 – Layer 4 elements

9.3.4.1 Library

Package: Layer4-MethodAndLibrary

Essence, Version 1.0 69

Description

A library includes a collection of practices and methods.

Generalizations

N/A

Attributes

name : String [1] The name of the library.
icon : GraphicalElement [1] The icon to be used when presenting the library itself.
briefDescription : String [1] A short description of what the library captures.

Associations

practice : Practice [*] The practices contained in the library.
method : Method [*] The methods contained in the library.

Invariant

-- The practices included in a method are available within the library.
method.includedPractice->forAll (ip | self.practice->includes (ip))

and
-- The methods have unique names.
method->forAll(m1, m2 | m1 <> m2 implies m1.name <> m2.name)

and
-- The practices have unique names.
practice->forAll(p1, p2 | p1 <> p2 implies p1.name <> p2.name)

Semantics

A library contains elements relevant for a specific subject or area of knowledge, like software development. The elements
contained in the library are practices and methods to be used in that area.

9.3.4.2 Method

Package: Layer4-MethodAndLibrary

Description

A Method describes how an endeavor is run.

Generalizations

N/A

Attributes

name : String [1] The name of the method.
icon : Graphical Element [1] The icon to be used when presenting the method.
briefDescription : String [1] A short description of the method.

Associations

includedPractice : Practice [1..*] The composed practices making up the method.

Invariant

true

70 Essence, Version 1.0

Semantics

A method is a composition of practices forming a (at the desired level of abstraction) complete description of how an
endeavor is performed. A team’s method acts as a description of the team’s way-of-working and provides help and
guidance to the team as they perform their task. Note that a method does not add any substantial information to a
composition of practices, but only a name and a description. The description is supposed to explain for which purpose
and level of abstraction the composition of practices is suitable.

Different methods, i.e. different compositions of practices, are created addressing:

 A particular size or style of a software engineering endeavor.

 A particular style or type of development.

 A particular risk or set of circumstances.

Pre-built methods, i.e. methods provided in a library and not developed by the team itself composing a collection of
practices, provide a set of “starter packs” for teams wishing to adopt a particular methodology or approach. These
methods can be updated to describe how a team would like to apply them; they can also be composed with additional
practices to specialize a method even further.

When the endeavor is initiated, instances of the alphas and work products defined in the selected method are created
corresponding to the actual occurrences the team is working with. These instances change states based on the team’s
actions. A more thorough description of the performance of a method is found in Section 9.5.

9.4 Composition

9.4.1 Introduction
The main purpose of composing practices is to define a method. This method could be used in endeavors developing
software, although other purposes and domains are also possible.

In this section, we present what it means to compose two practices to form a new practice. This practice may in its turn
be composed with other practices and eventually the result can be used as a method describing the performance of a
software engineering endeavor.

First we define a simple algebra for composition of graphs of instances and links of classes and associations in the
metamodel. Then, we use this algebra to define what we mean by composition of practices, i.e. merging two graphs of
instances of the constructs in the kernel language, or instances of the classes in the metamodel. We also provide some
examples of practice composition.

9.4.2 Graph Algebra
The algebra consists of three operations that each operate on instance models of the metamodel, i.e. graphs of instances
and links.

The constructs are:

 P (x) – variable definition

 P [x <- y] – renaming

 P + Q – merge

where P and Q are graphs of instances and links. Each of these operations is described below.

9.4.2.1 Variable Definition

A variable definition, P (x), defines a named variable, x, (a placeholder) in a graph, P. The variable is to be filled, i.e.
merged, either with an instance of a class in the metamodel, like an activity or an alpha, or with a link between two
instances, i.e. an instance of an association in the metamodel. The variable may occur in several places within P, and all
of them will be merged with the same instance.

Essence, Version 1.0 71

In the trivial case, the variable is independent of the other elements in P, i.e. the variable has no relationships to other
elements in P. However, in general the variable is inserted into the structure of P. The different options are described
below.

9.4.2.1.1 Add Instance

The variable defines where an instance of a class in the metamodel is to be inserted into P. The variable may have links
to other instances.

Figure 20 – A variable called “plan” which is to be of type Work Product is added and linked to an
already existing Activity

9.4.2.1.2 Add Link

A second possibility is that the variable defines a link of an association in the metamodel between two instances in P, i.e.
the variable is to be merged with a link in the other graph. Merging a variable with a link, which has the same name and
type as the variable, will result in a graph where the variable has been replaced by the corresponding link.

Figure 21 – A variable is a link between two existing instances

9.4.2.1.3 Insert Instance on Link

A third option is to insert a variable representing an instance of a class onto a link, i.e. to insert the variable between two
linked instances. This is accomplished by replacing the link with two links and a variable representing the instance. The
two links must be of the same type and have the same name as the original link.

72 Essence, Version 1.0

Figure 22 – A variable is inserted onto a link defined in the left graph resulting in the right graph

9.4.2.2 Renaming

A rename operation, P [x <- y], replaces all occurrences of the name ‘x’ within P with the name ‘y’ regardless of
where in P the name is used.

Figure 23 – After applying the [X <- Z] operation on the structure to the left, all occurrences of “X”
in the diagram to the left are replaced with “Z” in the diagram to the right

9.4.2.3 Merge

A merge of two graphs, A + B, results in a new graph where instances of the same type and with the same name are
merged into one instance containing the composition of the two instances’ contents.

A + B =
let
 ac = graphCopy (A)
 bc = graphCopy (B)
 ai = allInstances (ac)
 bi = allInstances (bc)
in
 y bi . x ai : x y merge (x, y, ai)

merge (a, b, c) =
y b.contents . x a.contents : x y manuallyMerge (x, y)

y b.contents . x a.contents : x y addElement (a.contents, y)

Essence, Version 1.0 73

y b.relationships . x a.relationships : x y DO NOTHING

y b.relationships . x a.relationships : x y
let
 ob = y.otherEnd (b)
in
 z c : ob z addElement (a.relationships, mk-Link (y.type, y.name, a,
z))
 z c : ob z addElement (a.relationships, mk-Link (y.type, y.name,
a, ob)

graphCopy (g) =
return a copy of the graph (instances and links) reachable from g

allInstances (g) =
return a set of all instances reachable from g

manuallyMerge (a, b) =
the merge of primitive types, like strings and icons, is not predefined and must
be performed manually

addElement (s, e) =
add the element e to the set s

The operation “mk-“ is used to create a new instance of a metaclass or a metaassociation.

9.4.3 Required Primitive Operations
In the metamodel, the following operations can be applied to all elements, i.e. they are defined in each class and each
association:

 type – returns the type (class) of the element

 name – returns the name of the element

The following operations can be applied to all instances of classes, i.e. they are defined in each class:

 contents – returns all contained elements, like operations and attributes

 relationships – returns all outgoing relationships

The following operation can be applied to all links, i.e. it is defined in each association:

 otherEnd (o) – returns the element connected to the link which is opposite to the element, o, also connected to
the link

9.4.4 Additional Definitions in the Algebra
The merge operation is both commutative and associative:

P + Q + R = (P + Q) + R a renaming operation may have to be performed
P + Q = Q + P a renaming operation may have to be performed

The following define obvious abbreviations that may be used to reduce the size of expressions in the algebra.

P (x, y) = (P (x)) (y)
P [x <- y, u <- v] = (P [x <- y]) [u <- v]

74 Essence, Version 1.0

Equivalence () between two elements means:

 the elements are instances of classes or links of associations in the metamodel – the two elements have the same
name, the same type, and their contained elements are equivalent, but the two elements are distinct

 the elements are texts, integers, unlimited naturals, or icons – the two elements represent the same value, i.e.
they are treated to be the same

9.4.5 Composition of Practices
Now, we can define the meaning of composing two practices using the algebra presented above. We start by defining the
compose operation. Then, we provide a simple example when composing two practices.

Note, this operation can be used to compose any elements of the same type being the root nodes of graphs, like practices
and kernels.

9.4.5.1 Definition of the Compose Operation

A composition of two elements (like practices), compose (P, Q, aName), results in a new element of the same
type as the two named aName. The content of the new element is a merge of the elements contained in the two graphs
defined by the two original elements.

compose (x, y, n) =
x.type = y.type (x [x.name <- n]) + (y [y.name <- n])

9.4.5.2 Applying the Compose Operation

The composition of two practices is done in a sequence of steps.

We start (if needed) by introducing variables, i.e. placeholders, into the structure of one or both of the two practices,
where elements of the other practice are to be inserted. This may introduce variables as well as new links into the
structure of the practice. The name of a variable should be the same as the name of the element in the other practice to be
inserted into the variable.

Since the merge is based on equivalence, i.e. the names and the types should be the same, we have to ensure that no
elements of the same type have the same name and should not be merged. We therefore continue (if necessary) by
renaming all elements that have the same name but are not to be merged. Furthermore, elements that should be merged
are renamed so they have the same name. We also have to consider the variables and the elements to be inserted into
(merged with) these variables.

Finally, the composition is made as defined by the compose (.) function above. The two input practices are renamed
to the provided name and then the merge of the two is performed. Note, the two original practices are not affected by the
composition.

9.4.6 Examples

9.4.6.1 Simple Composition

In this example, we have two practices: Iterative Planning and Iterative Assessment. (Neither of them fulfills the
definition of being a practice, but they are sufficient for the example.) The composition of the two will result in a third
practice: Iterative Development. Obviously, the result in this example is not the full Iterative Development practice. Here,
it is only used to exemplify the composition of two practices.

In this example, we have excluded alphas and activity spaces and therefore also activity manifests and alpha manifests.
We assume that the former are defined in a kernel and hence will be the same in both practices and obviously be merged.
The latter, i.e. the manifest instances, will, by definition, be unique for each practice and hence will not be merged.

Iterative Planning – consists of two activities: Agree Iteration and Guide Team. Each of them being the predecessor of
the other. Agree Iteration uses the Iteration Plan work product.

Essence, Version 1.0 75

Figure 24 – The structure of the [Iterative Planning practice

Iterative Assessment – consists of one activity: Evaluate Results and one work product: Iteration Assessment.

Figure 25 – The structure of the Iterative Assessment practice

The composition of the two practices is performed in two steps. First, we need to enable the insertion of the Iteration
Assessment activity into the predecessor cycle defined in the Iteration Planning practice. If we do not do this, the
Iteration Assessment activity will be performed independently of the other two activities. Second, the actual composition
is made, which will merge elements with the same name and types, and result in a new practice.

We start by inserting a variable into the Iteration Planning practice. We call this variable Evaluate Results (the same as
the name of the activity we are to insert) and it is of type Activity. The variable is inserted where the evaluation at the end
of an iteration is to take place, namely on the Predecessor link from the Agree Iteration activity to the Guide Team
Activity. (Formally, the link is replaced by two links of the same kind, directed in the same way as the original one, and
with the inserted variable in between.)

76 Essence, Version 1.0

Figure 26 – A variable is inserted between Agree Iteration and Guide Team. The variable has the same
name as the activity to be inserted

Now, we continue with the second step and do the actual composition of the two practices. First, the two practices are
renamed during the composition; we call them Iterative Development. Then, all elements in these two practices with the
same names and types are merged. In this case, the two practices have the same name and will be merged, and the
variable Evaluate Results in the Iteration Planning practice and the activity with the same name in the Iteration
Assessment practice will also be merged.

Figure 27 – The structure of the resulting practice

Essence, Version 1.0 77

Hence, the formal expression for the composition is:

compose (Iterative Planning, Iterative Assessment, ITERATIVE DEVELOPMENT)

9.5 Dynamic Semantics
Since the language defines not only static elements like Alphas and Work Products, but also states associated with them,
it can not only be used to express static method descriptions, but also dynamic semantics. Using the states of the single
Alphas and their constituent Work Products, the overall state of a software engineering endeavor can be expressed. Based
on this, denotational semantics can be defined for a function that supports a team in the enactment of a software
engineering endeavor, by using the current state and a specification of the desired state to create a “to-do” list of activities
to be performed by the team.

In a large or complex endeavor this function may be provided by a specialist tool. In smaller endeavors, where the
overhead of tool support cannot be justified, the function represents a manual recipe that can be followed to determine
guidance on how to proceed.

9.5.1 Domain classes

9.5.1.1 Recap of Meta-modeling Levels

As stated in Section 9.2.1, the Essence language is defined as a set of constructs which are language elements defined in
the context of a meta-modeling framework. In this framework all the constructs of the language, as described in Section
9.3, are at level 2.

 Level 3 – Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

 Level 2 – Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

 Level 1 – Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

 Level 0 – Occurrence: the run-time instances, i.e. these are the real-life elements in a running development
effort.

A Method Engineer using the Essence language to model the Practices and its associated Activities, Work Products etc.,
would work at level 1. For instance, to describe an agile Practice like Scrum the Method Engineer would define activities
such as “Sprint Planning Meeting” and “Daily Scrum”, and work products such as “Sprint Goal” at level 1. This is
exactly analogous to a Software Engineer using the UML language (also described as constructs at level 2) to model an
order processing system by define classes such as “Customer, “Order” and “Product” and use cases such as “Place an
Order” and “Check Stock Availability” at level 1.

A team using Scrum on a project would be working at level 0. The project team would hold “Sprint Planning Meetings”
and “Daily Scrums” and each would be a level 0 instance of the corresponding activity at level 1, and the goal set for
each Sprint would be a level 0 instance of the “Sprint Goal” work product defined at level 1. This is exactly analogous to
the creation of Customers “Bill Smith” and “Andy Jones” and products “Flange” and “Grommet” at level 0 in the
executing order processing system.

9.5.1.2 Naming Convention

In order to define the dynamic semantics it is necessary to refer to the inhabitants of levels 1 and 0 as well as those of
level 2. In order to make it clear at which level a named term belongs, we use the following naming convention:

 X (an unadorned name) is a language Construct at level 2 as defined in Section 9.3, such as Alpha, Practice,
Activity, Work Product.

 my_X (prefixed) is a Type at level 1 created by instantiating X. So if X is Activity, my_Activity could be Sprint
Planning Meeting.

78 Essence, Version 1.0

 my_X_instance is an Occurrence at level 0 by instantiating my_X. So if X is Activity, my_Activity_instance
could be the XYZ Project Sprint Planning Meeting no. 5 held on the 16th July 2012.

This naming convention is used in the type signatures of functions of the dynamic semantics, so that it is clear to which
level of the framework the terms used in the function signature belong. Consider the function guidance which returns
a set of activities to be performed to a take an endeavor forward to the next stage. The type signature of this function is:

guidance: (my_Alpha, State)* (my_Alpha, my_Activity*)*

The terms my_Alpha and my_Activity in this type signature have names prefixed with my_ and so are at level 1.
The term State, on the other hand, has an unadorned name and so is at level 2. Notice here that we allow a function
type signature to use elements from different levels of the meta-modeling framework.

9.5.1.3 Abstract Superclasses

To ensure that occurrences at level 0 are endowed with the attributes they need to support the dynamic semantics, we
define a set of abstract superclasses at level 1 from which the types defined at level 1 are subclassed. For instance the
superclass my_Alpha ensures that every Alpha occurrence at level 0 will have attributes “instanceName”, “currentState”,
“workProductInstances” and “subAlphaInstances”. These superclasses are named consistently with the naming
convention described above.

The relationships between these superclasses and the classes created from the level 2 constructs in shown in Figure 28 –
The Essence language framework.

Figure 28 – The Essence language framework

9.5.1.3.1 my_Alpha

The superclass to all level 1 types instantiated from the level 2 construct “Alpha”, i.e. the Alphas in some Kernel (such as
“Requirements”) or Practice as well as to Sub-Alphas added by a particular Practice (such as “Use Case”).

Attributes

instanceName : String [1] The name of an occurrence (e.g., Requirements for the XYZ Project)
currentState : State [1] A pointer to the current State of an occurrence (e.g., to the state

“Coherent”)
myWorkProductInstances : my_WorkProduct
[*]

The set of WorkProducts this alpha is manifested by.

mySubAlphaInstances : my_Alpha [0..*] A set of Sub-Alphas from AlphaContainment relationships.

Essence, Version 1.0 79

9.5.1.3.2 my_WorkProduct

The superclass to all level 1 types instantiated from the level 2 construct “Work Product”, i.e. to all templates
representing physical documents used in the software engineering endeavor, such as “Use Case narrative”.

Attributes

instanceName : String [1] The name of an occurrence (e.g., Use Case Narrative for Withdraw Cash)
current levelOfDetail : State [1] A pointer to the current State of an occurrence (e.g., to the state “Not

Started”)

9.5.1.3.3 my_Activity

The superclass to all level 1 types instantiated from the level 2 construct “Activity”, i.e. to all templates describing work
items.

Attributes

instanceName : String [1] The name of an occurrence (e.g., Define and agree Use Case
“Withdraw Cash”)

myAlphaInstances : my_Alpha [*] A pointer to the set of Alphas that this Activity is concerned with
(either by using it as reference or doing work that will change its
state).

myWorkProductInstances : my_WorkProduct[*] A pointer to the set of Work Products used by this Activity.

9.5.2 Operational Semantics
In this section we describe and illustrate the operational semantics. This covers how the level 0 model is created, how the
state of the endeavor is tracked in the model and how the model can be used to give advice based on how to progress the
state of the endeavor. For the last of these we provide a formal denotational semantics.

9.5.2.1 Populating the Level 0 Model

Generally, the appropriate Alpha instances and associated Work Product instances are created as soon as the respective
Alpha is considered in the endeavor. Some may exist right from the start of the endeavor (such as the Alpha instances for
Stakeholders or Requirements), while others may be created later, at the appropriate point in the conduct of a practice.
This is usually the case for subAlpha instances, which are instantiated as needed through the endeavor. The model of a
practice is used as the basis for instantiating the appropriate sets of Alpha instances and associated Work Product
instances, using the my_AlphaManfests defined for the my_Practice as templates. Although the mechanisms of
instantiation and updating Alpha instances and their associated Work Product instances can be formalized using
computational semantics, it is not an automatic process and must be triggered explicitly by the team.

A team is also free to create instances in their model that do not derive by instantiating from Practice templates, and thus
tailor the use of a Practice or even depart from it to create a partially or completely customized approach.

9.5.2.2 Determining the Overall State

Determining the overall state of the endeavor is done by determining the states of each individual Alpha instance in the
endeavor. This is done using the checkpoints associated with each state of the respective state graphs; and the state is
determined to be the most advanced in the state graph consistent with the currently met checkpoints. This means the state
that has:

1. all currently fulfilled checkpoints met; and

2. no outgoing transition to a state that has also all currently fulfilled checkpoints met.

This is illustrated in Error! Reference source not found.. Here the most advanced state of Software System “XYZ”
consistent with the checkpoints that have been met (shown as ticked) is “Useable”.

80 Essence, Version 1.0

Figure 29 – Determination of State using Check Points

The determination of Alpha instance states can happen at any point in time since evaluating the checkpoints is a manual
activity. When checkpoints are evaluated the result can be that an Alpha instance regresses, its current state being set
back to some earlier state of its lifecycle. This happens if re-evaluation determines that a checkpoint previously thought
to have been met is now deemed not to have been met.

9.5.2.3 Generating Guidance

In an actual running software engineering endeavor, a team will want to get guidance on what to do next.

Once the overall state of the endeavor is determined, the model can be used to generate such advice. This can be
understood as a guidance function that takes a set of pairs of (Alpha instance and target State) as its argument and returns
a set of newly instantiated Activities: a “to-do” list to be performed by the team. This function is invoked with an actual
argument consisting of a set of pairs, each pair consisting of a my_Alpha_instance (at level 0) and a my_State (at level
1). For each pair the function returns guidance on how to progress each my_Alpha_instance to its target state my_State.
This guidance is of the form of a set of newly instantiated activities (at level 0) for each my_Alpha_instance, constituting
a to-do list to be performed by the team to advance its state. The essential idea is to assemble the to-do list by examining
each Alpha instance given to the function and finding those activities that have the target state of that Alpha instance
among its completion criteria.

Note that an Essence model does not specify how the team works on a set of activities. This is the dictated by the
policies, rules or advice of the practices being used on the endeavor. These may require or suggest that certain activities
should be prioritized, done in a particular sequence, divided among sub-teams, and so on. The team uses its expertise in
the practices to work out exactly how to perform the activities required. Nor is there any ultimate guarantee that the team
will follow the advice or perform the suggested activities competently: in that sense the model is an “open loop” control
system. However, regular re-evaluation of the checkpoints and the consequent re-setting of the Alpha instance states will
provide feedback to the team on whether or not their work is advancing as hoped.

Several other functions can be defined to measure the progress and health of the endeavor, for instance to determine
whether the right set of my_Alpha_Instances and my_WorkProduct_Instances is in place, or to determine whether the
endeavor has reached its final state. These have not been defined here.

9.5.2.4 Formal definition of the Guidance Function

In this section, we provide a formal description of the operational semantics in terms of the function guidance. This

Essence, Version 1.0 81

function takes a set of pairs of (Alpha instance and target State) as its argument and returns a set of to-do lists, one for
each Alpha instance and target State provided to the function.

The essential idea is to compile the to-do lists by examining each Alpha instance given to the function and finding those
activities that have the target state of that Alpha instance among its completion criteria. However, the target state
specified for an Alpha instance may not be the next state in the state graph of the Alpha, and so a function
statesAfter is used to find the intermediate states. The to-do list generated consists of the activities required to
progress the Alpha instance through all these states in order to reach the specified target.

First we specify the statesAfter function. Suppose that a state graph has a sequence of states S0, S1, S2, S3. If
statesAfter is called with (S0, S3) it will return {S1, S2, S3}. In other words, all the states passed through to get to S3

but not including the starting state S0. This is easier to specify in terms of a function fullPath that generates the full
set of states including the starting state. So if fullPath is called with (S0, S3) it will return {S0, S1, S2, S3}.

statesAfter: (State, State) State*
statesAfter (s1, s2) =
 fullPath(s1, s2) – {s1}

fullPath: (State, State) State*
fullPath (s1, s2) =
 if ((s1.outgoingTransition = null) (s1 = s2)) {s1}
 else {s1} fullPath(s1.outgoingTransition.target, s2)

We use this to specify the guidance function. Each (Alpha instance, target State) pair is taken in turn.

guidance: (my_Alpha, State)* (my_alpha, my_Activity*)*
guidance (cas) =
 let as cas
 in to_do(as) guidance (cas {as})

The to_do function takes a single (Alpha instance, target State) pair and creates the set of activities that are required to
progress the Alpha instance to the required target State. This is done by finding those activity types that have the target
state or any intermediate state among its completion criteria. The function statesAfter is used to find the
intermediate states.

Note that the completion criteria (defined at level 1) are defined using activity types (at level 1). The function to_do
determines the set of activity types required for each Alpha instance.

As the to-do list is to be constructed as a set of new instantiated activities (at level 0) we use mk_w() to instantiate
(i.e., create an instance of) w at level 0. This is done by the function create_instances. Each newly instantiated
level 0 activity stores the passed Alpha instance () as an element of its stored set of related Alpha instances,
myAlphaInstances (see Section 9.5.1.3).

to_do: (my_Alpha, State) (my_alpha, my_Activity*)
to_do (,) =
let cw = { w | (.type w.outputAlpha)
 (’ • completionStates(w.completionCriterion) •)
 (’ statesAfter(.currentState,)) }
 in (, create_instances(, cw))

create_instances: (my_Alpha, Activity*) my_Activity*
create_instances(, cw) =
 let w cw
 in mk_w() create_instances(, cw – {w})

Finally, we specify the function completionStates which is used by the to_do function to determine the set of states
forming the completion criteria of an activity.

completionStates: CompletionCriterion* State*
completionStates (ccc) =

82

9.6

9.6.1
The conc
language
represent
elements
construct
represent
defined in

The follo

Moreove
descriptio
applicabl

Given th
and link r

9.6.2
Most of t
for the pu

9.6.3
The defa
the const
shown in

let cc
in rs c

Grap

Speci
crete syntax o
e. Views are
ting elements
 from abstrac
t. In the same
t (parts of) th
n this languag

owing views a

er, the graphic
on and symb
le.

his, diagrams a
refers to the sy

Relev
the constructs
urpose of bein

Some constru
where the stat
any specific s

Constructs lik
instead visual

Defau
ault notation fo
truct’s type (le
n guillemets ab

ccc and r
completion

phical S

ification
f the languag
defined and
from abstract
ct syntax lay
way, a view c

he same langu
ge specificatio

are defined in t

F

cal syntax of
bol of the syn

are introduced
yntax specific

vant Sym
s in the abstrac
ng visualized.

ucts are visual
tes of the state
symbol.

ke Completion
lized textually

ult Notati
for a meta-clas
evel 1 in the a
bove the type

rs = cc.re
nStates(cc

yntax

Format
e is organized
used indepen

t syntax layers
ers 1 and 2.
capable of rep
uage construct
on.

the graphical

Figure 30 –

each constru
ntax. This sec

d by listing th
cation of an in

mbols
ct syntax of th
However:

lized in terms
e graph can be

n Criterion an
y only.

ion for M
ss construct in

abstract syntax
e name. Altern

eachedStat
cc – {cc})

d in views. Ea
ndently from
s 1, 2 and 3 ca
The view is

presenting jus
t. It is consid

syntax:

View to laye

uct to be visu
ction includes

he graphical n
ndividual elem

he Kernel Lan

s of complete
e visualized in

nd Required C

Meta-Clas
n the abstract
x). The name o
natively, if the

te
)

ach view prov
abstract synt

an be used to r
allowed to r

st elements fro
dered correct

er mapping

ualized is intro
s subsections

nodes and link
ment.

nguage require

diagrams and
n a diagram bu

Competency m

ss Const
syntax is a s

of the constru
e meta-class c

vides notations
tax layers. Fo
represent a lan
represent just
om abstract sy
to define and

overview

oduced in a s
for Style G

ks to be includ

e a visual repr

d may not requ
ut where State

may not requir

tructs
olid-outline re

uct itself (level
construct defin

 Ess

s for a subset
or example, a
nguage constr
t a part of th
yntax layer 1 c
d use other vi

separate secti
Guidelines and

uded in the dia

resentation in

quire a symbol
e Graph in itse

ire symbols of

ectangle conta
l 2 in the abst
nes its own di

sence, Version

of elements o
a view capab
ruct just conta
he whole lang
can also be us
iews than the

on that provi
d Examples

agrams. Each

n terms of a sy

l, e.g. State G
elf does not re

f their own bu

aining the nam
tract syntax) c
istinct symbol

n 1.0

of the
ble of
aining
guage
sed to

ones

ides a
when

node

ymbol

Graph,
equire

ut are

me of
can be
l, this

Essence,

symbol c

This prov

Style Gu

Exampl

Figure

9.6.4
The follo
visualizin

9.6.4.1

An Alpha
placed be

Style Gu

Exampl

9.6.4.2

An Alpha
connecte

, Version 1.0

can be shown

vides a defaul

uidelines

Center the na

Center the na

Include the sy

es

e 31 – Exam

View
owing section
ng elements in

 Alpha

a is visualized
elow the symb

uidelines

Center the na

es

2 Alpha

a Association
d segments. T

above the typ

t and unique v

ame of the con

ame of the con

ymbol of the c

mple visualiz

1: Alpha
ns define rele
n abstract synt

d by the follow
bol:

ame of the Alp

Associati

is visualized b
The association

e name in the

visualization o

nstruct’s type i

nstruct itself in

construct abov

zations of th

as and th
evant symbols
tax layers 1, 2

wing symbol,

Fig

pha in boldface

Figure 3

on

by a solid line
n line is adorn

rectangle.

of each meta-c

in boldface.

n plain face w

ve the type nam

he Alpha me

heir State
s for View 1:
2 and 3.

, either contai

gure 32 – Alp

e, either withi

33 – Softwar

e connecting t
ned with the n

class construc

ithin guilleme

me and aligne

eta-class con

es
: Alphas and

ining the nam

pha symbol

in the symbol

re System A

two associated
name of the as

t in the abstra

ets above the t

ed to the right.

nstruct and

the States. T

e of the Alpha

or below the

Alpha

d Alphas. The
sociation.

act syntax.

type name, or

.

d its Softwar

This view is t

a or with the

symbol.

 line may con

alternatively:

re System ty

thereby capab

name of the A

nsist of one or

 83

:

ype

ble of

Alpha

more

84

Style Gu

Exampl

9.6.4.3

A Kernel
the Kerne

Style Gu

uidelines

Center the na

An open arro
indicates the
only and has n

es

Figu
Software

3 Kernel

l is visualized
el placed belo

uidelines

Center the na

ame of the Alp

owhead ‘>’ o
order of readi
no general sem

ure 35 – Alp
e System Alp

l

by a hexagon
ow the symbol

ame of the Ker

Figure 34

pha Associatio

or ‘<’ next to
ing and under
mantic meanin

pha Associa
pha, read as

n containing a
l.

Fig

rnel in boldfac

4 – Alpha As

on above or un

o the name o
rstanding the a
ng.

ation betwee
s: “The Soft

a cogwheel; ei

gure 36 – Ker

ce, either with

ssociation s

nder the assoc

f the associat
association. T

en the Requ
tware System

ither containin

rnel symbol

hin the symbol

ymbol

iation line in p

tion and poin
This arrowhead

irements Alp
m fulfills the

ng the name of

l

l or below the

 Ess

plain face.

nting along th
d is for docum

lpha and the
e Requireme

f the Kernel o

e symbol.

sence, Version

he association
mentation purp

e
ents.”

or with the nam

n 1.0

n line
poses

me of

Essence,

Exampl

9.6.4.4

A State is

Style Gu

Exampl

9.6.4.5

A Transit
more con

Exampl

, Version 1.0

es

4 State

s visualized by

uidelines

Center the na

es

5 Transi

tion is visuali
nnected segme

es

Figure 4

F

y a rectangle w

ame of the Stat

tion

ized by a solid
ents.

41 – Transiti

Figure 37 – K

with rounded

Fig

te in boldface

Figure 3

d line with an

F

ion from the

Kernel for S

corners conta

gure 38 – St

e.

39 – Mileston

n open arrowh

Figure 40 – T

e Objectives

Software Eng

aining the nam

tate symbol

nes Agreed

head connectin

Transition

s Agreed Sta

gineering

me of the State

State

ng two States.

ate to the Pl

e.

. The line may

lan Agreed S

y consist of o

State

 85

one or

86

9.6.4.6

This sect
informati

9.6.4.6

Node	Ty

Alpha	

Link	Typ

Alpha	As

Exampl

Refer to k

9.6.4.6

Node	Ty

State	

Link	Typ

Transitio

Style Gu

6 Diagra

tion defines th
ion about the

6.1 Alpha S

ype	

pe	

ssociation	

es

kernel examp

6.2 State G

ype	

pe	

on	

uidelines

Place the star

Use transition
transitions wh
specific seque
corresponding

ams

he graphical el
concrete notat

Structure D

Table 8

Table

les.

Graph Diag

Table

Tabl

rt state at the to

ns to visualiz
hen there are
ence from star
g transitions.

lements that m
tion for each e

Diagram

8 – Graphica

Symbol	

9 – Graphic

Symbol	

gram

e 10 – Graph

Symbol	

e 11 – Graph

Symbol	

op of the diag

ze a logical s
mutually exc

rt to stop, we

may be shown
element can b

al nodes in A

cal links in A

hical nodes

hical links in

gram, and the

sequence thro
clusive state s
may assume t

n in diagrams,
be found.

Alpha Struc

Alpha Struct

in State Gra

	

n State Grap

	

stop state at th

ough states, fr
sets involved
that any loop

and provides

cture diagram

Refere

Sectio

ture diagram

Refere

	 Section

aph diagram

Refere

Sectio

ph diagrams

Refere

Sectio

he bottom of t

rom start to s
in the sequen
or alternation

 Ess

s cross referen

ms.

ence	

n	9.6.4.1	Alph

ms.

ence	

n	9.6.4.2	Alph

ms.

ence	

n	9.6.4.4	Stat

s.

ence	

n	9.6.4.5	Tra

the diagram.

stop. Only vi
nce from start
is permitted w

sence, Version

nces where det

ha.	

ha	Associatio

te.	

nsition.	

isualize altern
t to stop. Wit
without visual

n 1.0

tailed

on.	

native
thin a
lizing

Essence,

Exampl

9.6.4.7

As a com
importan
things yo
a practice

In particu
hands-on
practition

9.6.4.7

A card is
The follo

, Version 1.0

es

7 Cards

mplement to th
nt aspects of a
ou need to rem
e is a correspo

ular, cards ar
n and natural f
ners in their w

7.1 The An

s visualized a
owing is a bas

he symbols an
an element in

member about
onding set of c

re straightforw
for practitione

way of working

natomy of a

s a solid-outli
ic anatomy alt

Figure

nd diagrams w
n the Kernel L
an element. I

cards.

ward to manif
ers to put on th
g.

a Card

ine rectangle
though variati

e 42 – State G

we use a card m
Language. A

In many cases

fest as physic
he table, play

containing a
ions are allow

Graph exam

metaphor (as i
card presents
, all that a pra

cal entities (pr
around with,

mix of symbo
wed:

mple

in 5x3 inch in
s a succinct s
actitioner need

rint them on
and reason ab

ols and textua

ndex cards) to
summary of t
ds to be able t

paper) which
bout; all for th

al syntax relat

 visualize the
the most impo
to apply a kern

h makes them
he purpose to

ted to the elem

 87

most
ortant
nel or

m very
guide

ment.

88

Style Gu

9.6.4.7

An Alpha

uidelines

Place the ow
element name

7.2 Alpha D

a definition ca

Card left-han

Card right-h
Qualities, and

Figure 4

wner name in
e top-left.

Definition C

ard is defined

nd-side: State

hand-side: Br
d contained el

43 – A basic

boldface at th

Card

as follows:

e Graph Diagr

rief Descripti
ements (sub-A

c card anato

the top-right o

ram for the Al

ion of the Al
Alphas or Wor

omy to visua

of the card an

lpha.

lpha, as well
rk Products, if

alize an elem

nd use a font

as a listing
f any).

 Ess

ment

t with smaller

of contents i

sence, Version

r size than fo

ncluding Ess

n 1.0

or the

ential

Essence,

Exampl

9.6.5
The follo
of visuali

9.6.5.1

A Work P
of the Wo

Style Gu

Exampl

, Version 1.0

es

View
owing sections
izing element

 Work P

Product is visu
ork Product pl

uidelines

Center the na

es

Figu

2: Sub-A
s define releva
s in abstract s

Product

ualized by the
laced below th

ame of the Wo

ure 44 – Soft

Alphas an
ant symbols fo
yntax layers 2

e following sy
he symbol:

Figure

rk Product in

Figure 46

tware Syste

nd Work
for View 2: Su
2 and 3.

ymbol, either

45 – Work P

boldface, eith

– Iteration P

em Alpha De

k Product
ub-Alphas and

containing the

Product sym

her within the

Plan Work P

efinition Car

ts
d Work Produc

e name of the

mbol

symbol or bel

Product

rd

cts. This view

 Work Produc

low the symb

w is thereby ca

ct or with the

ol.

 89

apable

name

90

9.6.5.2

An Alpha
more con
Alpha; an

As an alt
Alpha sy

Style Gu

Exampl

Figure

9.6.5.3

An Alpha
more con
and with

Note that
their con

2 Alpha

a Containmen
nnected segme
nd with the m

ternative, an A
ymbol.

uidelines

Arrange the l
top-down hier

If there are tw
the same hori

Visualizing a

es

e 48 – Softw

3 Alpha

a Manifest is
nnected segme
the multiplici

t this is the s
ntext; that is, w

Containm

nt is visualized
ents. The line

multiplicity of t

Alpha Contai

line vertically
rarchy.

wo or more sub
izontal level a

sub-Alpha mu

ware System

Manifest

visualized by
ents. The line
ity of the Wor

ame symbol a
whether two A

ment

d by a solid li
e is adorned w
the sub-Alpha

Figure 47

nment can be

y with the sup

b-Alphas of th
nd by merging

ultiplicity is o

super-Alph
with

a solid line c
 is adorned w

rk Product pla

Figure 4

as the Alpha
Alphas are con

ine connecting
with a filled di
a placed near t

– Alpha Co

e visualized b

per-Alpha on t

he same super
g the lines to

optional.

ha and three
visualized m

connecting an
with a filled di
aced near the e

49 – Alpha M

Containment
nnected (Alph

g a super- and
iamond place
the end of the

ntainment s

by encompassi

top and the su

r-Alpha, they
the super-Alp

e sub-Alphas
multiplicitie

Alpha and a W
iamond placed
end of the line

Manifest sym

symbol, how
ha Containmen

d a sub-Alpha
d at the end o
line connectin

symbol

ing the sub-A

ub-Alpha at th

may be visual
ha into a sing

s: Architect
es

Work Product
d at the end o
e connecting th

mbol

ever the symb
nt), or whethe

 Ess

a. The line ma
of the line con
ng the sub-Al

Alpha symbols

he bottom, the

lized as a tree
gle segment.

ture, Compo

t. The line ma
of the line con
he Work Prod

bols are discr
er an Alpha an

sence, Version

ay consist of o
nnecting the s
pha.

s within the s

ereby visualiz

 by being plac

onent, and T

ay consist of o
nnecting the A
duct.

riminated base
nd a Work Pr

n 1.0

one or
super-

super-

zing a

ced at

Test

one or
Alpha;

ed on
oduct

Essence,

are conne

As an alt
symbol.

Style Gu

Exampl

Figu

9.6.5.4

A Practic
below the

Style Gu

Exampl

, Version 1.0

ected (Alpha M

ternative, an A

uidelines

Arrange the l
left-to-right h

If there are tw
the same hori

Visualizing a

es

ure 50 – Sof

4 Practic

ce is visualize
e symbol.

uidelines

Center the na

es

Manifest).

Alpha Manife

line horizonta
hierarchy.

wo or more W
izontal level a

Work Produc

ftware Syste

ce

ed by a hexago

ame of the Pra

est can be vis

lly with the A

Work Products
nd by merging

ct multiplicity

em Alpha an
Descriptio

on; either con

Figu

ctice in boldfa

Figure 52

sualized by en

Alpha to the le

 of the same A
g the lines to

is optional.

nd three Wor
n with visua

ntaining the na

ure 51 – Prac

face, either wit

2 – Scrum Es

ncompassing

eft and the Wo

Alpha, they m
the Alpha into

rk Products
alized multip

ame of the Pra

ctice symbo

thin the symbo

ssentials Pr

the Work Pro

ork Product to

may be visuali
o a single segm

s: Design Mo
plicities

actice or with

ol

ol or below th

ractice

oduct symbols

o the right, the

ized as a tree
ment.

odel, Build,

the name of t

he symbol.

s within the A

ereby visualiz

by being plac

and Release

the Practice p

 91

Alpha

zing a

ced at

e

placed

92

9.6.5.5

This sect
informati

9.6.5.5

Node	Ty

Alpha	

Work	Pr

Alpha	Co

Alpha	M

Exampl

Figu

5 Diagra

tion defines th
ion about the

5.1 Alpha H

ype	

roduct	

Link	Type

ontainment	

anifest	

es

ure 53 – Alp

ams

he graphical el
concrete notat

Hierarchy

Table 1

Table 1

e	

pha Containm

lements that m
tion for each e

Diagram

2 – Graphic

Symbol	

13 – Graphic

ment and Al

may be shown
element can b

cal nodes in

cal links in A

Symbol

lpha Manife

n in diagrams,
be found.

Alpha Hiera

Alpha Hiera

l	

est relations

and provides

archy diagra

Refere

Sectio

Sectio

rchy diagra

See	9.6

See	9.6

hips of the S

 Ess

s cross referen

ams.

ence	

n	9.6.4.1	Alph

n	9.6.5.1	Wor

ams.

Refer

6.5.2	Alpha	C

6.5.3	Alpha	M

Software Sy

sence, Version

nces where det

ha.	

rk	Product.	

ence	

Containment.

Manifest.	

ystem Alpha

n 1.0

tailed

a

Essence,

9.6.6
The follo
of visuali

9.6.6.1

An Activ
Activity p

Style Gu

Exampl

9.6.6.2

An Activ
or with th

Style Gu

Exampl

9.6.6.3

An Activ
one or m

, Version 1.0

View
owing section
izing element

 Activit

vity is visualiz
placed below

uidelines

Center the na

es

2 Activit

vity Space is v
he name of the

uidelines

Center the na

es

3 Activit

vity Manifest
more connected

3: Activi
s define relev
s in abstract s

ty

zed by the fo
the symbol:

ame of the Act

ty Space

visualized by t
e Activity Spa

ame of the Act

Fig

ty Manifes

is visualized b
d segments. T

ty Space
vant symbols f
yntax layer 3.

llowing symb

Figu

tivity in boldfa

Figure 55 –

the following
ace placed bel

Figure

tivity Space in

gure 57 – Sp

st

by a solid line
The line is ado

es and A
for View 3: A
.

bol, either con

ure 54 – Act

face, either wit

– Sprint Ret

dashed-outlin
low the symbo

56 – Activity

n boldface, eit

pecify the S

e connecting
orned with a f

Activities
Activity Spaces

ntaining the n

tivity symbo

thin the symbo

trospective A

ne symbol, eith
ol:

y Space sym

her within the

oftware Acti

an Activity Sp
filled diamond

s and Activitie

name of the A

ol

ol or below th

Activity

her containing

mbol

e symbol or be

ivity Space

pace and an A
d placed at th

es. This view

Activity or wit

he symbol.

g the name of

elow the symb

Activity. The l
he end of the l

is thereby ca

th the name o

f the Activity S

bol.

line may cons
line connectin

 93

apable

of the

Space

sist of
ng the

94

Activity

Note tha
discrimin
Alpha an
(Activity

As an alt
symbol.

Style Gu

Exampl

Figure 5

9.6.6.4

An Activ
more con
the succe

Figure 6

Style Gu

Space.

at this is the
nated based o
nd a Work Pro
y Manifest).

ternative, an A

uidelines

Arrange the l
a left-to-right

If there are tw
at the same ho

es

59 – Specify

4 Activit

vity Predecess
nnected segme
essor, that is, t

60 – Activity

uidelines

Lines may be

same symbol
on their contex
oduct are conn

Activity Manif

ine horizontal
t hierarchy.

wo or more A
orizontal leve

y the Softwa

ty Predece

sor is visualiz
ents. The line
the opposite o

y Predecess

e drawn using

Figure 5

as the Alpha
xt; that is, wh
nected (Alpha

fest can be vis

lly with the A

ctivities of the
l and by merg

are Activity S

essor

zed by a solid
is adorned w
f the predeces

sor symbol.

curved segme

58 – Activity

a Containmen
hether two A

a Manifest), o

sualized by en

Activity Space

e same Activi
ging the lines t

Space and t
Case

d line connect
with a filled tri
ssor.

ents.

Manifest sy

nt and Alpha
Alphas are con

r whether an A

ncompassing th

to the left and

ity Space, they
to the Alpha in

two Activitie
es

ting two Activ
angular arrow

ymbol

Manifest sym
nnected (Alph
Activity Spac

he Activity sy

d the Activity

y may be visu
nto a single se

es: Identify U

vity symbols.
whead placed a

 Ess

mbol, howeve
ha Containme
ce and an Acti

ymbols within

y to the right, t

ualized as a tr
egment.

Use Cases a

The line may
at the end of t

sence, Version

er the symbol
ent), or wheth
ivity are conn

the Activity S

thereby visual

ree by being p

and Specify

y consist of o
the line conne

n 1.0

ls are
her an
nected

Space

lizing

placed

y Use

one or
ecting

Essence,

Exampl

9.6.6.5

A Compe

Style Gu

Exampl

9.6.6.6

This sect
informati

, Version 1.0

es

Figure 61 –

5 Compe

etency is visua

uidelines

Center the na

es

6 Diagra

tion defines th
ion about the

– Activity Pr

etency

alized by a 5-p

ame of the Com

ams

he graphical el
concrete notat

redecessor

point star sym

Figure

mpetency in b

Figure 6

lements that m
tion for each e

among four

mbol with the n

e 62 – Comp

boldface below

63 – Leaders

may be shown
element can b

r activities i

name of the C

petency sym

w the symbol.

ship Compet

n in diagrams,
be found.

in a Scrum E

Competency pl

mbol

tency

and provides

Essentials p

laced below th

s cross referen

practice

he symbol:

nces where det

 95

tailed

96

9.6.6.6

Node	Ty

Activity	

Activity	

Activity	

Exampl

Refer to 9

9.6.6.6

Node	Ty

Activity	

Link	Typ

Activity	

Style Gu

Exampl

Refer to 9

6.1 Activity

ype	

Space	

Link	Type

Manifest	

es

9.6.6.3 Activi

6.2 Activity

ype	

pe	

Predecessor	

uidelines

Arrange the A

es

9.6.6.4 Activi

y Space Hi

Table 14 – G

Table 15 –

e	

ity Manifest ex

y Flow Diag

Table

Table - G

Activity Prede

ity Predecesso

erarchy Di

Graphical no

Symbol	

Graphical li

xample.

gram

16 – Graphi

Symbol	

Graphical lin

Symbol	

ecessor arrow p

or.

iagram

odes in Acti

inks in Activ

Symbol

ical nodes i

nks in Activi

pointing from

ivity Space H

vity Space H

l	

in Activity F

ity Flow Hier

m left-to-right o

Hierarchy di

Refere

Sectio

Sectio

Hierarchy dia

See	9.6

Flow diagram

Refere

Sectio

rarchy diagr

Refere

See	9.6

or from top-to

 Ess

diagrams.

ence	

n	9.6.6.2	Acti

n	9.6.6.1	Acti

iagrams.

Refer

6.6.3	Activity

ms.

ence	

n	9.6.6.1	Acti

rams.

ence	

6.6.4	Activity

o-bottom, exce

sence, Version

ivity	Space.	

ivity.	

ence	

y	Manifest.	

ivity.	

y	Predecessor

ept for loop-b

n 1.0

r.	

backs.

Essence, Version 1.0 97

9.7 Textual Syntax
This section provides a textual syntax for the SEMAT Kernel Language and describes its mapping to the abstract syntax
presented above. The rules of the textual syntax are given in BNF-style.

The textual syntax does not specify any rules for file handling. Specifically it assumes that everything to be expressed
using this syntax is written in one single file. However, parser implementations may include facilities for merging files
prior to parsing in order to handle contents which are split over multiple files.

References between elements specified in the textual syntax can be made via identifiers. Each element that can be
referred to must define a unique identifier. Every element that wants to refer to another element can use this identifier as
a reference. Identifiers are unique within the containment hierarchy. Using an identifier outside the containment hierarchy
requires to prefix it with the identifiers of its parent element(s).

9.7.1 Rules
The following notation is used in this subsection:

 (…)* means 0 or more occurrences

 (…)? means 0 or 1 occurrence

 (…)+ means 1 or more occurrences

 | denotes alternatives

 ID is a special token representing a string which can be used as an identifier for the defined element

 …Ref denotes a token representing an identifier of some element (i.e. not the defined element)

9.7.1.1 Root Elements

The root element representing the file containing the specification is defined as:

Model:
 (AreaOfConcern)* (Kernel)* (Practice)*

An empty file is a valid root. If not empty, the file may contain an arbitrary number of AreaOfConcern declarations, an
arbitrary number of Kernel declarations and an arbitrary number of Practice declarations.

An AreaOfConcern declaration is defined as:

AreaOfConcern:
 'areaOfConcern' ID (STRING)?

This maps directly to the language element with the same name as defined on Layer 3. The ID creates an unique
identifier for this AreaOfConcern, which maps to the attribute “name”. The STRING is considered as content for attribute
“description”. If no STRING is given, the empty string must be used for attribute “description”.

A Kernel declaration is defined as:

Kernel:
 'kernel' ID
 ('based on kernels' KernelRef (',' KernelRef)*)?
 '{'
 (STRING)?
 (Alpha)*
 (KernelAssociation)*
 (Competency)*
 (ActivitySpace)*
 '}'

98 Essence, Version 1.0

This maps directly to the language element with the same name as defined on Layer 3. The ID creates a unique identifier
for this Kernel, which maps to the attribute “name”. The STRING is considered as content for attribute “description”. If
no STRING is given, the empty string must be used for attribute “description”. KernelRef is a unique identifier of
another Kernel, thus mapping to attribute “baseKernel”. The remaining elements are declarations for elements that can be
owned by a Kernel.

A Practice declaration is defined as:

Practice:
 'practice' ID
('based on kernels' KernelRef (',' KernelRef)*)?
('based on practices' PracticeRef (',' PracticeRef)*)?
 '{'
 (STRING)?
 (Alpha)*
 (KernelAssociation)*
 (WorkProduct)*
 (AlphaManifest)*
 (ActivitySpace)*
 (Activity)*
 (ActivityManifest)*
 (Competency)*
 (Skill)*
 (Pattern)*
 '}'

This maps directly to the language element with the same name as defined on Layer 3. The ID creates a unique identifier
for this Practice, which maps to the attribute “name”. The STRING is considered as content for attribute “description”. If
no STRING is given, the empty string must be used for attribute “description”. KernelRef is a unique identifier of a Ker-
nel, thus mapping to attribute “baseKernel”. PracticeRef is a unique identifier of a Practice, thus mapping to attribute
“basePractice”. The remaining elements are declarations for elements that can be owned by a Practice.

9.7.1.2 Kernel Elements

An Alpha declaration and its contents are defined as:

Alpha:
 'alpha' ID
 ('concerns' AreaOfConcernRef)?
 '{' (STRING)? StateGraph '}'

StateGraph:
 'has {' (StateGraphElement)+ '}'

StateGraphElement:
 State | Transition

State:
 'state' ID ('{' STRING ('checks {' (CheckListItem)+ '}')? '}')?

CheckListItem:
 'item' ID '{' STRING '}'

Transition:
 'transition' StateRef '->' StateRef

In all cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is con-
sidered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “de-
scription”. References via identifiers directly map to the respective associations of the meta-classes as defined in the

Essence, Version 1.0 99

abstract syntax.

KernelAssociation declarations resolve to two alternatives as:

KernelAssociation:
 AlphaAssociation | AlphaContainment

AlphaAssociation:
 Cardinality AlphaRef '--' STRING '-->' Cardinality AlphaRef
('in concern' AreaOfConcernRef)?

AlphaContainment:
 AlphaRef 'contains' Cardinality AlphaRef

The STRING is considered as content for attribute “name” of this AlphaAssociation. The Cardinality maps to the attrib-
ute “multiplicity” in both cases. References via identifiers directly map to the respective associations of the meta-classes
as defined in the abstract syntax.

An ActivitySpace declaration and its contents are defined as:

ActivitySpace:
 'activitySpace' ID
 ('concerns' AreaOfConcernRef)?
 '{' (STRING)?
 'targets' StateRef (',' StateRef)*
 (InputAlpha)?
 (OutputAlpha)?
 (CompetencyRequirement)?
 '}'

InputAlpha:
 'inputAlphas {' AlphaRef (',' AlphaRef)* '}'

OutputAlpha:
 'outputAlphas {' AlphaRef (',' AlphaRef)* '}'

CompetencyRequirement:
 'requires competency' CompetencyRef 'at level' CompetencyLevelRef (','
CompetencyRef 'at level' CompetencyLevelRef)*

The ID creates a unique identifier for this ActivitySpace, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

A Competency declaration is defined as:

Competency:
 'competency' ID
 ('concerns' AreaOfConcernRef)?
 '{' (STRING)? ('has {' (CompetencyLevel)* '}')? '}'

CompetencyLevel:
 'level' INT ID (STRING)? (SkillRequirement)?

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute
“description”. The INT maps to the attriute “level” of the CompetencyLevel element in the abstract syntax. See below for
the SkillRequirement declaration, since this is usually added by a practice via composition. References via identifiers
directly map to the respective associations of the meta-classes as defined in the abstract syntax.

100 Essence, Version 1.0

9.7.1.3 Practice Elements

A WorkProduct declaration and its usage in an AlphaManifest declaration are defined as:

WorkProduct:
 'workProduct' ID '{' (STRING)? StateGraph '}'

AlphaManifest:
 'describe' AlphaRef 'by' Cardinality WorkProductRef (',' Cardinality
WorkProductRef)*

The ID creates a unique identifier for this WorkProduct, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
The Cardinality maps to the attribute “multiplicity” in the AlphaManifest. References via identifiers directly map to the
respective associations of the meta-classes as defined in the abstract syntax.

An Activity declaration and its contents are defined as:

Activity:
 'activity' ID
 ('follows' (ActivityRef)*)?
 '{' (STRING)?
 'targets' StateRef (',' StateRef)*
 (InputAlpha)?
 (OutputAlpha)?
 (Input)?
 (Output)?
 (CompetencyRequirement)?
 (SkillRequirement)?
 '}'

Input:
 'input {' WorkProductRef (',' WorkProductRef)* '}'

Output:
 'output {' WorkProductRef (',' WorkProductRef)* '}'

SkillRequirement:
 'requires skill' SkillRef 'at level' SkillLevelRef (',' SkillRef 'at level'
SkillLevelRef)*

The ID creates a unique identifier for this Activity, which maps to the attribute “name”. The STRING is considered as
content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

An ActivityManifest declaration is defined as:

ActivityManifest:
 'do' ActivitySpaceRef 'by' ActivityRef (',' ActivityRef)*

References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

A Skill declaration is defined as:

Skill:
 'skill' ID
 ('concerns' AreaOfConcernRef)?
 '{' (STRING)? ('has {' (SkillLevel)* '}')? '}'

SkillLevel:
 'level' INT ID (STRING)?

Essence, Version 1.0 101

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute
“description”. The INT maps to the attribute “level” of the SkillLevel element in the abstract syntax. References via
identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

Pattern:
 'pattern' STRING '{' (
 ('with alphas' AlphaRef (',' AlphaRef)*)?
 ('with workProducts' WorkProductRef (',' WorkProductRef)*)?
 ('with states' StateRef (',' StateRef)*)?
 ('with activities' ActivityRef (',' ActivityRef)*)?
 ('with activitySpaces' ActivitySpaceRef (',' ActivitySpaceRef)*)?
) '}'

The STRING is considered as content for attribute “kind”. References via identifiers directly map to the respective
associations of the meta-classes as defined in the abstract syntax.

9.7.1.4 Auxiliary Elements

A Cardinality can be specified according to the following definition:

Cardinality:
 CardinalityValue ('..' CardinalityValue)?

CardinalityValue:
 INT | 'N'

An identifier used for reference is either a single token or prefixed as following:

ID ('.'ID)*

9.7.2 Examples
A complete Alpha declaration for Kernel Alpha “Requirement”:

alpha Requirements {
 "What the software system must do to address the opportunity and satisfy
the stakeholders."

 has {
 state Conceived {"The need for a new system has been agreed."
 checks {
 item cli1 {"The initial set of stakeholders agrees that a
system is to be produced."}
 item cli2 {"The stakeholders that will use and fund the
new system are identified."}
 item cli3 {"The stakeholders agree on the purpose of the
new system."}
 item cli4 {"The expected value of the new system has been
agreed."}
 }
 }
 state Bounded {"The theme and extent of the new system is clear."
 checks {
 item cli1 {"Stakeholders involved in developing the new
system are identified."}
 item cli2 {"It is clear what success is for the new
system."}
 item cli3 {"The stakeholders have a shared understanding
of the extent of the proposed solution."}
 item cli4 {"The way the requirements will be described is
agreed upon."}
 item cli5 {"The mechanisms for managing the requirements

102 Essence, Version 1.0

are in place."}
 item cli6 {"The prioritisation scheme is clear."}
 item cli7 {"Constraints are identified and considered."}
 item cli8 {"Assumptions are clearly stated."}
 }
 }
 state Coherent {"The requirements provide a coherent description of
the essential characteristics of the new system."
 checks {
 item cli1 {"The requirements are captured and shared with
the team and the stakeholders."}
 item cli2 {"The origin of the requirements is clear."}
 item cli3 {"The rationale behind the requirements is
clear."}
 item cli4 {"Conflicting requirements are identified and
attended to."}
 item cli5 {"The requirements communicate the essential
characteristics of the system to be delivered."}
 item cli6 {"The most important usage scenarios for the
system can be explained."}
 item cli7 {"The priority of the requirements is clear."}
 item cli8 {"The impact of implementing the requirements
is understood."}
 item cli9 {"The team understands what has to be delivered
and agrees that they can deliver it."}
 }
 }
 state SufficientlyDescribed {"The requirements describe a system that
is acceptable to the stakeholders."
 checks {
 item cli1 {"The stakeholders accept the requirements as
describing an acceptable solution."}
 item cli2 {"The rate of change to the agreed requirements
is relatively low and under control."}
 item cli3 {"The value provided by implementing the
requirements is clear."}
 item cli4 {"The parts of the opportunity satisfied by the
requirements are clear."}
 }
 }
 state Satisfactory {"The requirements that have been addressed
partially satisfy the need in a way that is acceptable to the stakeholders."
 checks {
 item cli1 {"Enough of the requirements are addressed for
the resulting system to be acceptable to the stakeholders."}
 item cli2 {"The stakeholders accept the requirements as
accurately reflecting what the system does and doesn’t do."}
 item cli3 {"The set of requirement items implemented
provide clear value to the stakeholders."}
 item cli4 {"The system implementing the requirements is
accepted by the stakeholders as worth making operational."}
 }
 }
 state Fulfilled {"The requirements that have been addressed fully
satisfy the need for a new system."
 checks {
 item cli1 {"The stakeholders accept the requirements as
accurately capturing what they require to fully satisfy the need for a new
system."}
 item cli2 {"There are no outstanding requirement items
preventing the system from being accepted as fully satisfying the requirements."}
 item cli3 {"The system is accepted by the stakeholders as
fully satisfying the requirements."}
 }
 }

Essence, Version 1.0 103

 transition Conceived -> Bounded
 transition Bounded -> Coherent
 transition Coherent -> SufficientlyDescribed
 transition SufficientlyDescribed -> Satisfactory
 transition Satisfactory -> Fulfilled
 }
}

A minimal declaration of an Activity Space using the Alpha declared above:

activitySpace SpecifyTheSystem {
 targets Requirements.SufficientlyDescribed
}

A minimal declaration of a Practice using the Alpha and Activity Space declared above:

practice UserStoryPractice {

 workProduct UserStory {
 has {
 state Requested
 state Written
 state Realized
 transition Requested -> Written
 transition Written -> Realized
 }
 }

 workProduct UserAcceptanceTest {
 has {
 state Planned
 state Written
 state Executed
 state Passed
 transition Planned -> Written
 transition Written -> Executed
 transition Executed -> Passed
 }
 }

 activity WriteUserStories {
 targets UserStory.Written
 }

 activity WriteUserAcceptanceTests {
 targets UserAcceptanceTest.Written
 }

 describe Requirements by 1..N UserStory, 1..N UserAcceptanceTest

 do SpecifyTheSystem by WriteUserStories,WriteUserAcceptanceTests

}

104 Essence, Version 1.0

Annex A: Responses to RFP Requirements
(Informative)

This annex provides the responses to the RFP requirements. The following tables provide a cross-reference between the
requirements as stated in the Request for Proposal and the corresponding responses provided by this submission.

A.1 Mandatory Requirements
Table 17 – Mandatory Requirements (Kernel)

Requirement Resolution

6.5.1.1 Domain model

The Kernel shall be represented as a domain
model of a small number (expected to be closer to
10 than a 100) of essential concepts of software
engineering and their relationships. The Kernel
shall be expressed in the Language.

The Kernel contains 7 Alphas and 15 Activity spaces capturing
the essentials of software engineering from the perspective of
the things to work with and the things to be done. The Kernel is
defined and presented using the language.

 The Kernel may be extended to identify the essential
competencies required to undertake a software engineering
endeavor. This is likely to add another 5 or 6 elements.

 The Kernel may be extended to include a number of
essential sub-alphas such as practice, tool, work item,
requirements item, system element, stakeholder
representative, team member etc. These would have
minimal state graphs that would be either used as is or
extended to support specific practices. This would add
another 10 – 15 elements.

6.5.1.2 Key conceptual elements

The Kernel shall define the key conceptual
elements that all software engineering endeavors
have to monitor, sustain and progress, covering at
least the following kinds of concepts (the specific
grouping used here is not required):

a. System: Concepts related to the system being
produced, for example: software, platform, etc.

b. Functionality: Concepts related to the required
function of the system being produced, for
example: requirements, needs, opportunities,
stakeholders, etc.

c. People: Concepts related to the people required
to create a system with the required functionality,
for example: project, team, role, etc.

d. Way of Working: Concepts related to the way an
organized team carries out its work to create a
system with the required functionality, for
example: method, practice, goal, etc.

The Kernel’s three areas of concern (see Section 8.2, 8.3 and
8.4) and their corresponding Alphas provide this coverage:

 a. Covered by the alpha Software System (see Section
8.3.2.2).

 b. Covered by the alphas Requirements (see Section
8.3.2.1), Stakeholders (see Section 8.2.2.1) and Opportunity
(see Section 8.2.2.2).

 c. Covered by the alpha Team (see Section 8.4.2.1).

 d. Covered by the alphas Work (see Section 8.4.2.2) and
Way-of-Working (see Section 8.4.2.3).

Essence, Version 1.0 105

6.5.1.3 Generic activities

The Kernel shall define the generic activities that
a team will need to undertake to successfully
engineer and produce a software system, covering
at least the following kinds of activities (the
specific grouping used here is not required):

a. Interacting with stakeholders: Activities related
to necessary interactions with stakeholders, for
example: exploring possibilities, understanding
needs, ensuring satisfaction, handling change, etc.

b. Developing the system: Activities related to
actually constructing a system, for example:
specifying, shaping, implementing, testing,
deploying and operating the system.

c. Managing the project: Activities related to
managing a project, for example: steering the
project, supporting the project team, assessing
progress and concluding the project.

The Kernel’s three areas of concerns (see Section 8.2, 8.3 and
8.4) and their corresponding Activity Spaces provide this
coverage:

 a. Covered by the activity spaces in the Customer area of
concern (see Section 8.2.3).

 b. Covered by the activity spaces in the Solution area of
concern (see Section 8.3.3).

 c. Covered by the Endeavor area of concern (see Section
8.4.3).

6.5.1.4 Kernel elements

The definition of each element of the Kernel shall
include the following:

a. A concise description of the meaning of the
element and its use in software engineering,
intuitively understandable to a practitioner.

b. The relationships of the element to other
elements in the Kernel.

c. The various different states the element may
take over time, including initial/entry and
final/exit criteria as appropriate for the element.

d. How the element is applied in practice,
including how it may be instantiated, tailored or
extended to support the work of a specific project
team using specific practices.

e. How different ways of applying the element
may be compared to each other and guidance on
deciding among the alternatives.

f. Appropriate metrics that can be used to assess
progress, quality, etc.

The Kernel element definitions cover:

 a. See the element descriptions.

 b. See Figure 3, Figure 4, the Alpha Associations, and the
Activity Space Completion Criteria.

 c. Each Alpha has a state graph and, for each state, entry
criteria. Each Activity Space has completion criteria.

 d. This will be covered by the examples.

 e. This will be covered by the examples.

 f. The Alpha states allow the measurement of progress and a
subjective assessment of quality. More empirical measures
can be added alongside the sub-alphas as part of maturing
the kernel specification

6.5.1.5 Scope and coverage

The Kernel shall be sufficient to allow for the
definition of practices and methods supporting
projects of all sizes and a broad range of lifecycle
models and technologies used by significant
segments of the software industry.

The Kernel can be extended to specific segments of the software
industry by creating kernel extensions and specific practices.

The Kernel is light-weight enough to be applied to even the
smallest of projects and comprehensive enough to support even
the largest of software endeavors.

The Alphas states can be used to define all types of lifecycle
model from the most lightweight agile lifecycle through more
formal iterative lifecycles to the most formal and traditional

106 Essence, Version 1.0

waterfall lifecycles.

See the lifecycle examples provided in Section C.1.3.

6.5.1.6 Extension

The Kernel shall also allow for extension, both in
terms of addition of new elements and providing
additional detail on existing elements that provide
for practice-specific work products.

a. The Kernel shall allow for project and
organization specific extensions.

b. The Kernel shall be tailorable to specific
domains of application and to projects involving
more than software, e.g., to serve as a basis for
future extensions for systems engineering.

The language allows Kernels to refer to other Kernels that are
based on via composition. This way, elements of two or more
Kernels can be merged to be used together in a specific situation.
The composition algebra also allows merging two elements into
one, that is, extending one element with the contents of the other
element.

Table 18 – Mandatory Requirements (Language)

Requirement Resolution

6.5.2.1.1 MOF metamodel

The Language shall have an abstract syntax model
defined in a formal modeling language. The
submission is expected to reflect this requirement
in a description or mapping to the OMG
architectural framework based on MOF.

The definition of the abstract syntax is based on MOF.

6.5.2.1.2 Static and operational semantics

The Language shall have formal static and
operational semantics defined in terms of the
abstract syntax.

See Section 9.3 for the static semantics and section 9.5 for the
dynamic semantics.

6.5.2.1.3 Graphical syntax

The Language shall have a graphical concrete
syntax that formally maps to the abstract syntax.
The submission is expected to reflect this
requirement in a description following the
Diagram Definition specification [DD] unless
arguments are given for choosing something else.

See Section 9.6 for the definition of the graphical syntax. It is
not based in the Diagram Definition specification, since this
specification was only available in a beta version at the time of
writing.

6.5.2.1.4 Textual syntax

The Language shall also have a textual concrete
syntax that formally maps to the abstract syntax.

See Section 9.7 for the definition of the textual syntax.

6.5.2.1.5 SPEM 2.0 metamodel reuse

Proposals shall reuse elements of the SPEM 2.0
metamodel where appropriate. Where an
apparently appropriate concept is not reused,
proposals shall document the reason for creating
substitute model elements.

This is discussed in Annex B: Section B.2.

Essence, Version 1.0 107

6.5.2.2.1 Ease of use

The Language shall be designed to be easy to use
for practitioners at different competency levels:

a. Those that have very little modeling experience
and quickly and intuitively need to understand
and learn how to use the Language.

b. Intermediate users who are more advanced and
willing to describe what kind of outcome they
expect of their work.

c. Advanced users that can work with all aspects
of the Language to model their complete software
endeavor.

The abstract syntax of the language provides a concept of layers,
where each layer provides a subset of language elements. The
graphical syntax of the language provides a concept of views,
where each view is concerned with specific aspects of a kernel
or method. This can be used on different competency levels:

 a. Users with little modeling experience use only language
layers 1 and 2 and views on Alphas and Work Products.

 b. Intermediate users use language layer 3 and the view on
Activities in addition.

 c. Advanced users use all 4 language layers and add more
sophisticated views not defined in this specification.

6.5.2.2.2 Separation of views for practitioners and
method engineers

The Language shall provide features to express
two different views of a method: the method
engineer’s view and the practitioner’s view. The
primary users of methods and practices are
practitioners (developers, testers, project leads,
etc.).

The proposal shall be accessible to both
practitioners and method engineers, but should
target the practitioners first and foremost.
Extensions should support method engineers to
effectively define, compose and extend practices,
without complicating its usage by the
practitioners.

The views defined in this language specification are simple
views suitable for practitioners. They focus on a small set of
elements in each view and are thus easily accessible. Moreover,
no knowledge about composition is needed to define simple
practices.

The language specification allows to define additional views on
language constructs which suit the needs of method engineers.
The composition algebra allows to compose language constructs
in many ways, including composition of practices and extension
by composition. However, composed practices are not handled
differently from simple practices, so accessibility for
practitioners is not limited.

6.5.2.2.3 Specification of kernel elements

The Language shall have features for specifying
Kernel elements, including:

a. Formal and informal descriptions of the content
and meaning of an element.

b. The relationship of the element of other
elements.

c. States the element may take over time and the
events that cause transitions among those states.

d. How the element is instantiated, including
provisions for practice-specific tailoring of the
element, and the basis for comparing different
instantiations.

e. Metrics defined to assess various attributes of
the use of the element.

The language defines (amongst others) elements “Alpha” (see
Section 9.3.1.1) and “Activity Space” (see Section 9.3.3.3) for
specifying Kernel elements. The language include:

 a. Attributes for covering natural language descriptions of
these elements as well as state graphs (on Alphas) and
completion criteria (on Activity Spaces) to formally express
the key semantics of these elements.

 b. Alphas and Activity Spaces that can be related to each
other via states on completion criteria. Alphas can be related
to other Alphas via Alpha Associations.

 c. Alphas that own state graphs. Transition among these
states is covered by the dynamic semantics.

 d. Instantiation of Alphas that is covered by the dynamic
semantics.

 e. The dynamic semantics which include proposals on
functions measuring progress or health of an endeavor
based on the number of Alphas that are instantiated or the
states they have reached.

6.5.2.2.4 Specification of practices The language specification provides an element “Practice” (see
Section 9.3.2.4) which is used and which relates to the Kernel

108 Essence, Version 1.0

The Language shall have features for specifying
practices in terms of Kernel elements, including:

a. Description of the particular cross-cutting
concern addressed by the practice and the goal of
the application of the practice.

b. The Kernel elements relevant to the practice
and how they are instantiated for use in the
practice, including any practice-specific tailoring
of the elements.

c. Any work products required by and produced
by the practice.

d. The expected progress of work under the
practice, including progress states, the rules for
transition between them and their relation to the
states of relevant Kernel elements used in the
practice. (For example, describing a practice that
involves iterative development requires describing
the starting and ending states of every iteration.)

e. Verification that the goal of the practice has
been achieved in it application, particularly in
terms of measurements of metrics defined for its
elements.

elements in the following ways:

 a. The element “Practice” owns a description. By looking at
the Alphas used in this Practice it can be determined in
which area this practice can be used.

 b. The element “Practice” can use Alphas and Activity
Spaces from the Kernel. Through composition, it can
redefine parts of these Kernel elements if necessary.
Instantiation of these elements is not specific to practices.

 c. The element “Practice” uses AlphaManifests to relate
WorkProducts to Alphas.

 d. Progress in general is covered by the state graphs on
Alphas and WorkProducts. Iterations can be covered by
Sub-Alphas, allowing to track states for each iteration
individually.

 e. The dynamic semantics can be used to determine whether
all Kernel elements are in their final states.

6.5.2.2.5 Composition of practices

The Language shall have features for the
composition of practices, to describe existing and
new methods, including:

a. Identifying the overall set of concerns
addressed by composing the practices.

b. Merging two elements from different practices
that should be the same in the resulting practice,
even if they have different contents defined in the
practices being composed. (For example, a use
case practice may have a work product called Use
Case, with a name, a basic flow etc. A testing
practice may have a work product called Testable
Requirement with an identifier and a description.
In the method resulting from composing these two
practices, these two work products should be
merged into one, where the name of the Use Case
is the identifier of the Testable Requirement and
the basic flow of the Use Case is the description
of the Testable Requirement).

c. Separating two elements from different
practices that should be different in the resulting
practice, even though they may superficially seem
to be the same. (For example, in a testing practice
there may be a work product called Plan and in an
iterative development practice there may also be a
work product called Plan. In the method resulting
from composing these two practices these two
work products must be different – e.g., the Testing

The composition algebra allows for composition of practices.

 a. Composed practices are in general not different from
simple practices, so the concerns addressed by a composed
practice can retrieved from looking at the alphas used in the
composed practice.

 b. The composition algebra allows for renaming of elements
so that different elements can be renamed to be safely
identified. Contents are merged recursively. Conflicts on
descriptions have to be solved manually.

 c. Renaming can also be used for changing names prior to
merging, so that elements can be kept distinguishable even
if they look similar in the original practices.

 d. Methods know the practices they are composed of so they
can be modified by redoing the composition with partially
the same and partially new practices.

Essence, Version 1.0 109

Plan vs. the Development Plan.)

d. Modifying an existing method by replacing a
practice within that method by another practice
addressing a similar cross-cutting concern.

6.5.2.2.6 Enactment of methods

The semantic definition of the Language shall
support the enactment by practitioners of methods
defined in the Language, for the purposes of

a. Tailoring the methods to be used on a project.

b. Communicating and discussing practices and
methods among the project team.

c. Managing and coordinating work during a
project, including modifications to the methods
over the course of the project by further tailoring
the use of the practices in the method.

d. Monitoring the progress of the project.

e. Providing input for tool support for
practitioners on the project.

 a. Any composition of practices can be instantiated as a
method and used on a particular endeavor, as long as it
addresses the concerns of this endeavor.

 b. Different methods can be queried for advice in a
particular situation (as long as the methods address the
concerns at hand), so team can discuss the different advices
and communicate differences between methods based on
them.

 c. Dynamic semantics are partially defined as denotational
semantics using the overall state of the endeavor as input,
thus not being dependent on using the same method
definition each time.

 d. Tracing the overall state of the endeavor is part of the
dynamic semantics.

 e. Dynamic semantics can partially be formalized, so they
can also be implemented in tools.

Table 19 – Mandatory Requirements (Practices)

Requirement Resolution

6.5.3.1 Examples of Practices

a. Submissions shall provide working examples to
demonstrate the use of the Kernel and Language
to describe practices. Preferably these examples
should be drawn from existing and well-known
practices.

b. Submissions shall provide working examples to
demonstrate the composing of practices into a
method.

c. Submissions shall provide working examples to
demonstrate how a method can be enacted.

d. Submission shall include a capability to
demonstrate the operational execution of methods
as a proof of concept.

It is expected that the example practices are well-
structured and suited to demonstrate how well the
proposed Kernel and Language can be used to
define good-quality practices. Each example of
practice shall:

a. be described on its own, independent from any
other practice

b. be either explicitly defined as a continuous

A set of examples is described in Annex C:

 a. See Section C.1.

 b. See Section C.2.

 c. See Section C.3.

 d. See Section C.3.

110 Essence, Version 1.0

activity or have a clear beginning and end states

c. bring defined value to its stakeholders

d. be assessable; in other words, its description
must include criteria for its assessment when used

e. include, whenever applicable, quantitative
elements in its assessment criteria;
correspondingly, the description must include
suitable assessing metrics.

A.2 Optional Requirements
None

Essence, Version 1.0 111

Annex B: Issues to be Discussed
(Informative)

This annex provides the discussions on issues to be discussed from the RFP.

B.1 Kernel
This annex contains a discussion of the alternative options considered for the kernel elements defined in the Kernel
Specification. The Annex is presented in two sections:

1. Alphas – Alternatives for the names of the Alphas used in the kernel specification.

2. Activity Spaces - Alternative sets of Activity Spaces and Activity Space names.

Note: The Alphas are presented first as they were defined first and heavily influenced the selection and naming of the
Activity Spaces

B.1.1 Alphas

B.1.1.1 Alternatives Considered but Rejected for Opportunity

Opportunity – the set of circumstances that makes it appropriate to develop or change a software system.

On a grand scale, the opportunity to which the software system is addressed could be:

 To go into space – needs software systems on board the spacecraft, for communication, and on the ground.

 To run a chemical plant - needs logistics systems for shipping in and out, process control, new production
processes.

 To provide a new mobile phone platform - needs applications in the phone and on the web.

 To re-organize a business or government department - must continue to serve demands from customers and the
public as software systems are updated, "migrated" or retired.

In a business context, opportunities could include:

 Increase customer satisfaction – for example by a focus on end-to-end performance of the business in customer
terms.

 Decrease staff costs – for example by allowing expert systems to respond to customer enquiries.

 Provide better local weather forecasts – for example by using automation based on new research in meteorology.

On a more personal level, opportunities (motives) could include:

 To make my fortune by producing a hit game.

 To publicize my business to rich people.

 To educate and entertain.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Business Context – considered too vague to be useful. Teams need to identify the opportunity that the business
context provides.

 Domain of Expertise – doesn’t capture the concrete opportunity / problem to be addressed.

 Effect – sounds too much like a side effect of the work rather than its intent.

112 Essence, Version 1.0

 Goal – considered too general. This would be too easily confused with the use of goals in project management
and other practices.

 Motive / Motivation / Incentive - good ways to think about the opportunity but rejected as too abstract and
conceptual for most readers.

 Needs – considered too confusing when compared and contrasted with requirements.

 Objectives - considered too general. This would be too easily confused with the Team’s short-term objectives.

 Problem / Underlying Problem – considered too negative.

 Purpose – too easily confused with the requirements. It doesn’t reflect the opportunity to be addressed, and is
more commonly used to construct sentences such as “the purpose of the software system is to address the
opportunity”.

 Value – too confusing as many of the other alphas will have value associated with them. An essential property
of any opportunity but considered too confusing for use as an alternative to opportunity.

B.1.1.2 Alternatives Considered but Rejected for Stakeholders

Stakeholders – The people, groups, or organizations who affect or are affected by a software system.

There are many different types of stakeholders and stakeholder groups, including:

 Users - people who use the system. One very important type of stakeholder is the user. These are a prime
example of a set of stakeholders that must be involved in the development of the software system.

 Project Steering Committees / User Groups / User Communities made up of the project sponsors, users and
other people affected by the development and maintenance of the software system. Many projects have a
project steering committees made up of the project sponsor, the senior supplier, the senior user and other
stakeholders or their representatives. This is one of the practices available to help involve the stakeholders. The
same can be said for structures such as User Groups and User Communities.

 Customers and Sponsors, people who finance the development and maintenance of the software system. They
are also known as the “gold owners”.

 Back-end support stakeholders such as Maintainers and Developers developing, evolving and maintaining the
software system.

 Support and Operations made up of technicians providing feedback on the usage of a software system and
supporting its use.

 Scrum Chickens, part of the stakeholder community in Scrum. Scrum acknowledges the presence of different
types of stakeholders in its concept of pigs and chickens where the development team members are the pigs and
the rest of the stakeholders, such as users and sponsors, are the chickens. Scrum focuses all of the involvement
of the stakeholders through the single role of the Product Owner, which is one of the many practices available
for managing the stakeholders.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Customer – this was explored as a candidate name in an attempt to show that software engineering is customer
focused, but was rejected because 1) not all software engineering endeavors have customers in the traditional
sense, 2) confusion arose between customers and users, purchasers, and sponsors, and 3) there are many
stakeholders that people don’t consider to be customers such as internal governance bodies.

 External Stakeholders – rejected because there are many circumstances where members of the team are also
stakeholders.

 Set of Stakeholders – although it has the benefit of stressing the fact that it represents all of the stakeholders it
was rejected as too cumbersome for natural language use.

 Stakeholder Community - although it has the benefit of stressing the fact that it represents all of the

Essence, Version 1.0 113

stakeholders it was rejected as too cumbersome for natural language use.

 Users, Sponsors etc - rejected because they are each only one type of stakeholder.

B.1.1.3 Alternatives Considered but Rejected for Requirements

Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

There are many different examples, and ways, of capturing the requirements including:

 In a development context: Declarative Requirement Documents, Use Cases, User Stories and Tests (text and or
code) can all be used to record the Requirements.

 In a continuing context: Training, Service Level Agreements, Problem Investigations, Process Controls may
depend on an understanding of the Requirements, and may over time contribute to learning more about them.

 In an explicit context: A specification of system attributes, with desired and measureable levels, can constitute
the Requirements.

 In an implicit context: The Requirements may simply be that the Software System, or some part of it, must
continue in use.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Concerns – this was considered but was quickly discarded as being too vague and not immediately meaningful to the
software engineering community.

 Intent – this one was considered in depth as a way of circumventing some of the bad feeling towards the word
requirements in parts of the agile community. Intent is defined as “something that is intended; an aim or
purpose”.

Requirements is preferred to intent because it is more concrete and it represents a specification (whether it be
explicit or tacit) against which the Software System will be accepted (and typically must be demonstrated to
conform). Requirements stand for something that is required and is a necessity or obligation. In comparison with
intent, requirements connote the idea of obligation or a must whereas intent connotes the idea of objective or
desire. Intent was also considered to be a little too abstract to resonate with the majority of the software
engineering community.

 Requirement – Some people would have preferred the term to be used in its singular form. Unfortunately using
the singular of a definition with the word must in can lead people to think that every detailed requirement
statement must be met by the software system produced. This is not the intent. “Requirement” is ambiguous
because it could mean “the requirement” (for the whole system, i.e. a synonym for “the specification”) or it
could mean “a requirement” (i.e. one of many that together comprise the overall requirement / specification).

 Specification – Wikipedia (http://en.wikipedia.org/wiki/Specification_%28technical_standard%29) defines “A
specification is an explicit set of requirements to be satisfied by a material, product, or service.” In some
methods there is a focus on the production of some form of external / functional specification to which the
system must conform. This is often the intent of the requirements documentation.

This term was rejected as it is too easily confused with the technical design specifications that may also be
produced and because it sounds very heavy-weight.

 Usage - Although it is generally considered to be good practice to capture the requirements in some form of
usage based description (be it scenarios, use cases or user stories) it was felt that usage was too restrictive a
term and may cause practitioners to not look at their requirements holistically enough to really capture the
desires of their stakeholders.

B.1.1.4 Alternatives Considered but Rejected for Software System

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

There are many types of software system that can be the result of software engineering including:

114 Essence, Version 1.0

 Purpose-built (bespoke) facilities including research, simulation, data capture and analysis for a scientific
enterprise, such as drug discovery and testing.

 Bespoke software for a consumer platform such as mobile phone applications, games.

 Commercial-Off-The-Shelf (COTS) product for ‘shrink-wrapped’ sale to customers, such as office productivity.

 COTS products integrated into a business work system. These could be for resource planning (such as SAP
Business Management software) or for technical models and visualization (such as Intergraph SmartPlant).

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Software / Working Software – This was considered to be too limiting. Is it just running code or does it
include all the information involved including the supporting documentation? If a team of people is developing
a database application but does not write a single line of code is what they’ve produced software?

Software was also considered to be too abstract a concept for the primary output from software engineering as in
and of itself it does not require engineering. Software is zeroes and ones, in the form of computer programs and
the data that they manipulate. To be useful software requires there to be a suitable computing platform upon
which it can be run. The output of software engineering must also consider the computing platform as well as
the software.

 System - Although often used within computing circles this was considered to be too general. The consensus
was that all engineering disciplines produce some kind of system, and therefore software engineering needs to
produce something more specialized than just a system.

It was also thought that using system as a software engineering universal would cause confusion and friction
with the systems engineering community.

 Software Intensive System - Originally proposed as the name, and rejected as it was considered to be limiting;
software engineering is also important in some systems that are not primarily software systems. It was also
considered to be too cumbersome.

 Product / Software Product – It seemed a little too abstract to call the product of software engineering product.
There was also the problem of interpretation. Typically the term product is interpreted in one of two ways:

o commodities offered for sale; "that store offers a variety of products"

o an artifact that has been created by someone or some process; for example "they improve their product
every year"; "they export most of their agricultural production"

The first interpretation implies a much greater scope than just producing working software systems – it would
imply that software engineering should always include marketing and product management activities and that it
always produces a software intensive system that is to be sold.

It was also considered to be too generic - there are many disciplines that produce artifacts that can be sold or
treated as products. We need a universal that helps to differentiate software engineering from other forms of
production and related professions that strive to produce products (such as catering and fashion industries).

 Service - Although it is hoped that the results of software engineering will be of service, and provide useful
services to their users, to consider the product of software engineering to be a service rather than a form of
goods is probably a step too far.

 Solution - The term solution often implies something potentially far-greater than the software system being
produced. It was also considered to be too generic – there are many disciplines that produce solutions. We need
a kernel that helps to differentiate software engineering from other forms of engineering and related professions
that strive to produce solutions (such as medicine and politics).

B.1.1.5 Alternatives Considered but Rejected for Work

Work: Activity involving mental or physical effort done in order to achieve a result.

Examples of evidence of work in software engineering endeavors include:

Essence, Version 1.0 115

 The Scrum Sprint Backlog.

 Team Task Lists.

 Work item Lists.

 Project Work Breakdown Structures.

 Work Packages.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Project - A project is one of many ways of organizing the work to be done. Project was rejected because much
software engineering is done within product centers and application development teams where the development
work is seen as on-going and not managed as a series of projects.

There is also the issue of organizing support and maintenance work, which again is often not managed as a
series of projects.

 Task - A task is typically seen as a unit of work, and a way of breaking down the work into individually
addressable work items to be managed within a project plan or via a task board. Task is too specific and find-
grained a term to be used to represent the work in its entirety.

 Activity – This was considered too general for use in the kernel. It would also cause confusion by clashing with
the Kernel Language’s use of the term activity.

 Endeavor – This was considered too abstract to appeal to most software engineers.

B.1.1.6 Alternatives Considered but Rejected for Way of Working

Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

There are many different examples of teams adopting a specific way of working:

 Methods such as Dynamic Systems Development Method (DSDM).

 Processes such as the Rational Unified Process (RUP).

 Frameworks such as Scrum and Kanban.

 Bodies of knowledge such as SWEBOK, PMBOK and ITSQB.

 Practices such as Test-Driven Development and Continuous Integration.

 Maturity Models such as CMMI.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Method – not an appealing word to developers and other practitioners. Most practitioners see a method as being
a formal, comprehensively described description of what they are supposed to do, rather than a description of
what they actually do. If you ask a team to describe their way-of-working they will tell you what they do, if you
ask them to describe their method they will either claim that they don’t have one or point you at a stack of
documentation that they generally ignore.

 Process – not an appealing word to developers and other practitioners. Suffers from the same problems as
method.

 Methodology – actually means the study of methods.

 Approach – considered too vague a name for such an important kernel element.

B.1.1.7 Alternatives Considered but Rejected for Team

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific

116 Essence, Version 1.0

software system.

Software engineering is a team sport and typically involves at least one team. Types of team and team structure used in
software engineering include:

 The Cross-Functional Development Team – A small team containing all the skills needed to develop a working
software system, as used in Scrum and other agile methods.

 Feature Teams and Component Teams – Types of cross-functional team organized around the requirements and
the architecture.

 The Segregated Team – A team that is made up of a number of specialist teams such as:

o The Management Team.

o The Requirements Team.

o The Development Team.

o The Testing Team.

o The Support Team.

 The Maintenance Team – A team focused on doing maintenance and makings small changes to a software
system.

 The Team of Teams – A team made up of a number of other teams.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Development Team / Software Development Team / Software Engineering Team - The term development
team was originally proposed, but it was decided to drop the word development because it was felt it conveyed
the wrong meaning, implying that team membership is limited only to software developers. Some people argued
that the qualifiers made the role of the team clearer but within the context of software engineering, and our
software engineering kernel, the role and purpose of the team is quite clear.

The same reasoning holds for Software Development Team and Software Engineering Team.

 Production Team / Enactment Team / Delivery Team - The word “Production” could be used to help classify
the team as the one actively involved in undertaking and participating in the work. “Production” distinguishes
this team from other interested parties that whilst influencing, guiding and supporting the endeavor are not
working directly on development activities.

The term is in general use in the production of plays, television shows and films to describe the group of
variously skilled people working to produce the play, TV show or film in question. This also has a high degree
of resonance when applied to the team working on a software system.

This term is rejected as too heavy and cumbersome, and also too limiting. The fact the Team is the Production
Team can be seen from its relationship with the software system and the stakeholder community. Within the
context of software engineering, and our set of software engineering universals, the role and purpose of the team
is quite clear.

The same reasoning holds for Enactment Team and Delivery Team.

 People, Software People, Software System People, Software Engineers - Whilst these terms do perhaps
classify the interests of the group it does not suggest any accountability for the work or endeavor.

The term ‘people’ was rejected as too general. The term ‘software engineers' was rejected as too limiting (see
also Development Team and Production Team).

Essence, Version 1.0 117

B.1.2 Activity Spaces

B.1.2.1 Alternative Names for the Activity Spaces

Alternative names were considered for each of the activity spaces included in the Kernel Specification. Table 20 shows
the various names considered for the Activity Spaces in the Customer Area of Concern.

Table 20 – Alternative Names for the Customer Activity Spaces

Name Alternative Comments

Explore Possibilities Understand the Need ‘Understand the Need’ sounded too much like it should
deal with the requirements rather than the stakeholders
and the opportunity.

Involve Stakeholders Engage Stakeholders ‘Involve’ was preferred to ‘Engage’ as it reinforces the
fact the stakeholders must be active in supporting the
team.

Ensure Stakeholder Satis-
faction

Accept the System The purpose here is to make sure that the stakeholders are
happy with the software system produced, and not to
force them to accept something they don’t want. This is
why ‘Ensure Stakeholder Satisfaction’ was preferred.

Use the System Exploit the System ‘Exploit’ sounded too much like sales and marketing to
resonate with software developers.

The merging of the two Activity Spaces ‘Engage Stakeholders’ and ‘Ensure Stakeholder Satisfaction’ into a single
Activity Space was also considered but was rejected as it would have covered too many state changes.

Table 21 shows the various names considered for the Activity Spaces in the solution Area of Concern.

Table 21 – Alternative Names for the Solution Activity Spaces

Name Alternative Comments

Understand Requirements Specify the System ‘Specify the System’ sounded very heavyweight and un-
agile. ‘Understand Requirements’ was judged to more
accurately reflect the purpose of the Activity Space and to
be more widely acceptable.

Shape the System Architect the System Both of these alternatives seemed to be suggesting specif-
ic approaches to achieving the underlying state changes.

Design the System

Implement the System Implement Software There is more than just implementing the software in-
volved in implementing a software system.

Create the System ‘Create the System’ sounded too much like green-field
development where no earlier version of the software
system exists.

Test the System Verify the System ‘Test’ was considered to be simpler and more intuitive
than the more formal sounding ‘Verify’

Deploy the System Release the System These alternatives were all considered to just be one as-

118 Essence, Version 1.0

Package the System
pect of deploying the system.

Deliver the System

Go Live

Operate the System Support the System ‘Operate’ was judged to communicate the purpose of the
Activity Space better than ‘Support’.

Table 22 shows the various names considered for the Activity Spaces in the endeavor Area of Concern.

Table 22 – Alternative Names for the Endeavour Activity Spaces

Name Alternative Comments

Prepare to do the Work Start the Work The purpose of the Activity Space is to get ready to start
the work, hence this alternative was rejected.

Prepare the Endeavor This alternative was judged less intuitive than ‘Prepare to
do the Work’.

Co-ordinate Activity Co-ordinate the Work More than just the work is being coordinated.

Steer the Work ‘Steer the Work’ was judged to be less accessible than
‘Coordinate Activity’. Also more than just the work is
being coordinated.

Support the Team No alternatives were suggested.

Track Progress Track the Work More than just the work is being tracked.

Do the Work Seemed to contradict the purpose of the Activity Spaces
all of which contain work to be done.

Assess Progress Sounds too judgmental.

Stop the Work Conclude the Endeavor This alternative was judged less intuitive than ‘Stop the
Work’.

 Closedown the Work ‘Stop’ seemed simpler and less formal.

The merging of the two Activity Spaces ‘Co-ordinate Activity’ and ‘Support the Team’ into a single Activity Space was
also considered but was rejected as it would have covered too many state changes.

B.1.3 Alternative sets of activity spaces
An alternative set of Activity Spaces was also prepared, one that used four areas of concern:

 People – This area of concern contains everything to do with the people directly or indirectly in the
development of the software system.

 Purpose - This area of concern contains everything to do with understanding and specifying what the software
system will do.

 Solution - This area of concern covers everything to do with the development of the software system.

 Endeavor - This area of concern contains everything to do with the work to be done and the way that it is to be

Essence, Version 1.0 119

approached.

This is shown in Figure 64. In this model the Alphas were also re-organized to place the team and stakeholders into the
new people Area of Concern, and opportunity and requirements into the purpose Area of Concern.

Figure 64 – Alternative Set of Activity Spaces using four Areas of Concern

In this model the number of Activity Spaces was considered to be too many to succinctly represent the things that need to
be done as part of any software engineering endeavor. Some of the Activity Spaces were not considered to be discrete
enough in particular the separation between ‘Acquire Resources’ and ‘Start the Work’, and ‘Release Resources’ and ‘Stop
the Work’. The consensus was that the model included in the Kernel Specification was more intuitive, clearer, and
succinct that the one presented here.

B.2 SPEM 2.0
<This will be provided as an Annex update for the March meeting.>

120 Essence, Version 1.0

Annex C: Practice Examples
(Informative)

This annex provides working examples to demonstrate the use of the Kernel and Language to describe practices.

C.1 Practices
This section contains illustrative examples of the following:

 Scrum

 User Story

 Lifecycle examples

C.1.1 Scrum
This section illustrates the Essence approach by modeling the Scrum project management practice. The Scrum practice as
documented here is for illustrative purposes only and explores how the Scrum practice may be mapped to the Essence
Kernel and Language. It should not be interpreted as a definitive example of how Scrum should be represented. There
may be multiple ways for different communities to represent Scrum.

C.1.1.1 Practice

The following Scrum concepts were identified from the Scrum guide [Schwaber and Sutherland 2011]:

 Scrum team (roles)

o Product Owner

o Development Team (of developers)

o Scrum Master

 Scrum events

o The Sprint

o Sprint Planning Meeting

o Daily Scrum

o Sprint Review

o Sprint Retrospective

 Scrum artifacts

o Product Backlog

o Sprint Backlog

o Increment

Essence,

Graphic

C.1.1.2

C.1.1.2

We exten
may cove

, Version 1.0

cal syntax

2 Alphas

2.1 Work

nd the Work a
er a number o

"The heart o
potentially re
effort. A new
2011]

s

alpha for Scru
f sprints. Thu

of Scrum is a
leasable produ

w Sprint starts

Figu

um. The Work
s we define a

a Sprint, a ti
uct Increment
immediately

ure 65 – Scr

k alpha is typ
new sub-alph

ime-box of o
t is created. S
after the conc

rum practice

pically used fo
ha called Sprin

ne month or
Sprints have co
clusion of the

e

or the duration
nt.

less during
onsistent dura
e previous Spr

on of a develo

which a “Do
ations through
rint." [Schwab

opment projec

one”, useable
hout a develop
ber and Suthe

 121

ct that

, and
pment
erland

122

Graphic

The Sprin
practice,
states of

Graphic

Textual

alpha

cal syntax

nt has its own
whereas the
the Requirem

cal syntax

syntax

Work {

n state graph.
Work state m

ments alpha but

Fi

Figure 66

Scrum comes
machine and it
t introduced S

igure 67 – T

6 – Sprint su

s with its own
ts associated

Scrum-specific

The states of

ub-alpha of

n specific set
checkpoints a
c checkpoints

f the Sprint

Work

of rules that
are more gene
(see the Textu

sub-alpha

 Es

should be def
eral. Here we
ual syntax exa

ssence, Versio

fined as part o
e have adopte
ample).

on 1.0

of the
ed the

Essence, Version 1.0 123

contains 1..N Sprint
}

alpha Sprint {

"The heart of Scrum is a Sprint, a time-box of one month or less during
which a “Done”, useable, and potentially releasable product Increment is created.
Sprints have consistent durations throughout a development effort. A new Sprint
starts immediately after the conclusion of the previous Sprint.

(...continues...)"

has {
 state Initiated {"The work has been requested."
 checks {

item c1 {"Product Owner presents ordered Product
Backlog items to the Development Team."}

}
}
state Prepared {"All pre-conditions for starting the work have been

met."
 checks {

item c1 {"Entire Scrum Team collaborates on understanding
the work of the Sprint"}

item c2 {"Development Team decides how it will build this
functionality into a "Done" product Increment
during the Sprint"}

item c3 {"Scrum Team crafts a Sprint Goal"}
}

state Started {"The work is proceeding."
 checks {
 item c1 {"A new Sprint starts immediately after the

conclusion of the previous Sprint"}
}

state Under Control {"The work is going well, risks are under
control, and productivity levels are sufficient to achieve a
satisfactory result."
checks {
 item c1 {"Daily Scrum optimizes the probability that the

Development Team will meet the Sprint Goal."}
 item c2 {"Every day, the Development Team should be able

to explain to the Product Owner and Scrum Master
how it intends to work together as a self-
organizing team to accomplish the goal and create
the anticipated increment in the remainder of the
Sprint."}

}
}
state Concluded {"The work to produce the results has been

concluded."
checks {
 item c1 {"During the Sprint Review, the Scrum Team and

stakeholders collaborate about what was done in the
Sprint."}

}
}
state Closed {"All remaining housekeeping tasks have been completed

and the work has been officially closed."
checks {
 item c1 {"A Sprint Review Meeting is held at the end of

the Sprint."}
 item c2 {"The Sprint Retrospective occurs after the

Sprint Review and prior to the next Sprint Planning
Meeting."}

}
}

}

124

}

C.1.1.2

The Scru
that may
Developm

Graphic

Scrum m
the role o
another a
would all
not all fo

Graphic

Textual

alpha

}

alpha

Scrum
organi
direct

2.2 Team

um practice rel
y be represente
ment Team, an

"The Scrum T
self-organizin
than being d
accomplish th
optimize flex

cal syntax

mandates that o
of the Scrum
alternative wo
low us to easi

ollowing Scrum

cal syntax

syntax

Team {
contains

Scrum Tea
"The Scru
Master. S
zing team
ted by oth

lates to the Te
ed by a sub-a
nd a Scrum M

Team consists
ng and cross-f
directed by o
he work witho
ibility, creativ

one sole perso
m Master. Thes
ould be to def
ier extend and
m.

Figur

1 Scrum T

am {
um Team co
Scrum Team
ms choose
hers outsi

eam alpha. Th
alpha. Scrum d

Master.

s of a Product
functional. Se
thers outside

out depending
vity, and produ

Fig

on should take
se types of co
fine a specific
d scale the pra

re 69 – The s

Team

onsists of
ms are sel
how best
de the te

he Team alpha
defines a spec

t Owner, the D
elf-organizing
e the team. C
g on others not
uctivity." [Sch

gure 68 – Sc

e on the role o
onstraints cou
c Scrum Team
actice to Scru

states of the

f a Produc
lf-organiz
to accomp
eam. Cross

refers to the i
cific Scrum T

Development T
g teams choos
Cross-function
t part of the te

hwaber and Su

crum Team

of a Product O
uld be added
m as a sub-alp
um of Scrums,

e Scrum Tea

ct Owner,
zing and c
plish thei
s-function

individuals wo
Team which co

Team, and a S
se how best to
nal teams hav
eam. The team
utherland 2011

Owner and ano
as checkpoint
pha. The intro
, including ma

am sub-alph

the Devel
cross-func
ir work, r
nal teams

 Es

orking in the
onsists of a P

Scrum Master
o accomplish
ve all compe
m model in Sc
1]

other sole per
ts on the Tea
oduction of a
anaging differ

ha

lopment Te
ctional. S
rather tha
have all

ssence, Versio

team, i.e. mem
Product Owne

r. Scrum Team
their work, r

etencies neede
crum is design

rson should tak
m alpha itsel
specific sub-

rent types of t

eam, and a
Self-
an being
competenc

on 1.0

mbers
er, the

ms are
rather
ed to
ned to

ke on
f, but
alpha
teams

a

cies

Essence,

needed
The te
produc

}

C.1.1.3

C.1.1.3

The Prod

Graphic

Textual

workPr

in the
made t
includ

, Version 1.0

d to accom
eam model
tivity.
(...conti

has {
 sta

}
}

3 Work P

3.1 Produc

duct Backlog a

"The Product
source of req
Product Back

"The Sprint B
product Incre
about what f
[Schwaber an

cal syntax

syntax

roduct Pro
"The Prod
e product
to the pro
ding its c
(...conti

has {
 sta
 sta

mplish the
in Scrum

nues...)"

ate Establ
checks

}

Products

ct Backlog

and Sprint Bac

t Backlog is a
quirements for
klog, including

Backlog is the
ement and rea
functionality w
nd Sutherland

oduct Back
duct Backl
and is th
oduct. The
content, a
nues...)"

ate NotOrd
ate Ordere

e work wit
is design

ished {"S
s {
item c1 {
item c2 {

Tea
item c3 {

and Sprint

cklog are asso

an ordered lis
r any changes
g its content, a

e set of Produ
alizing the Sp
will be in th
2011]

Figu

klog {
og is an
he single
e Product
availabili

dered
ed

thout depe
ned to opt

Scrum Team

{"The Prod
{"Develope
am."}
{"The Scru

t Backlog

ociated with th

st of everythi
s to be made
availability, an

uct Backlog i
print Goal. Th
he next Increm

ure 70 – Prod

ordered l
source of
Owner is
ity, and o

ending on
timize fle

m is estab

duct Owner
ers are as

um Master

he Requireme

ing that migh
to the produc

nd ordering."

tems selected
he Sprint Back
ment and the

duct Backlo

list of ev
f requirem
responsib
ordering.

others no
exibility,

blished."

r is assig
ssigned to

is assign

nts alpha.

t be needed i
ct. The Produ
[Schwaber an

d for the Sprin
klog is a fore
work needed

og

verything
ments for
ble for th

ot part of
, creativi

gned."}
o the Deve

ned."}

in the produc
uct Owner is r
nd Sutherland

nt plus a plan
ecast by the D
d to deliver t

that migh
any chang
he Product

f the team
ity, and

elopment

t and is the s
responsible fo
2011]

n for deliverin
Development
that functiona

ht be need
ges to be
t Backlog,

 125

m.

single
or the

ng the
Team
ality."

ded

,

126

}

workPr

Sprint
Goal.
functi
functi

}

C.1.1.3

The Incre

Graphic

Textual

workPr

a Spri
be “Do
Defini
Produc

 tra
}

roduct Spr
"The Spri
t plus a p
The Sprin
onality w
onality.
(...conti

has {
 sta

sta
 sta
 tra
 tra
}

3.2 Increm

ement is assoc

"The Increme
At the end of
meet the Scru
Owner decide

cal syntax

syntax

roduct Inc
"The Incr
nt and al
one,” whic
tion of “
t Owner d
(...conti

has {

ansition N

rint Backl
nt Backlo
plan for d
nt Backlog
will be in

nues...)"

ate Planne
ate Assign
ate Done
ansition P
ansition A

ment

ciated with the

ent is the sum
f a Sprint, the
um Team’s De
es to actually r

crement {
rement is
l previou
ch means i
“Done.” It
decides to
nues...)"

NotOrdered

og {
og is the
delivering
g is a for
n the next

ed
ned

Planned ->
Assigned -

e Software Sy

m of all the Pro
e new Increm
efinition of “D
release it." [Sc

F

the sum o
us Sprints
t must be
t must be
o actually

d -> Order

set of Pr
g the prod
recast by
t Incremen

> Assigned
-> Done

ystem alpha.

oduct Backlog
ment must be “
Done.” It must
chwaber and

Figure 71 – I

of all the
s. At the
e in useab
in useabl
y release

red

roduct Bac
duct Incre
the Devel
nt and the

d

g items compl
“Done,” whic
t be in useabl
Sutherland 20

Increment

e Product
end of a
ble condit
le conditi
it.

cklog item
ement and
lopment Te
e work nee

leted during a
h means it m
e condition re

011]

Backlog i
Sprint, t
tion and m
ion regard

 Es

ms selecte
realizing
eam about
eded to de

a Sprint and al
must be in use
egardless of w

items comp
the new In
meet the S
dless of w

ssence, Versio

ed for the
g the Spri
what
eliver tha

ll previous Sp
able condition

whether the Pr

pleted dur
ncrement m
Scrum Team
whether th

on 1.0

e
int

at

prints.
n and
oduct

ring
must
m’s
he

Essence,

}

C.1.1.4

The iden
iteration

Graphic

C.1.1.4

The Sprin

Graphic

, Version 1.0

 sta
 sta
 sta
 tra
 tra
}

4 Activit

ntified Scrum
that we will m

Sprint Plannin

Daily Scrum

Sprint Review

Sprint Retrosp

cal Syntax

4.1 Sprint

nt Planning M

"The work to
collaborative
one-month Sp
four-hour Spr

cal syntax

ate BeingD
ate Done
ate Releas
ansition B
ansition D

ties

events may b
map to a sub-a

ng Meeting

w

pective

Planning M

Meeting is asso

o be performed
work of the

print. For shor
rint Planning M

Developed

sed
BeingDevel
Done -> Re

be mapped to
alpha of Work

Figu

Meeting

ociated with th

d in the Sprin
entire Scrum
rter Sprints, th
Meetings." [S

Figure 7

loped -> D
eleased

o correspondin
. This gives u

ure 72 – Scru

he Prepare to d

nt is planned a
Team. The S

he event is pr
chwaber and

73 – Sprint P

Done

ng activities.
s the followin

um activitie

do the Work a

at the Sprint P
print Planning

roportionately
Sutherland 20

Planning Me

The concept
ng activities:

s

activity space.

Planning Mee
g Meeting is
shorter. For e

011]

eeting

of sprint how

.

eting. This pla
time-boxed to

example, two-

wever describ

an is created b
o eight hours
-week Sprints

 127

bes an

by the
for a
 have

128

C.1.1.4

The Daily

Graphic

C.1.1.4

The Sprin

Graphic

C.1.1.4

The Sprin

Graphic

C.1.1.5

Roles can

4.2 Daily S

y Scrum is as

"The Daily S
create a plan
forecasting th

cal syntax

4.3 Sprint

nt Review is a

"A Sprint Re
needed. Durin
Sprint. Based
next things th
elicit feedbac

cal syntax

4.4 Sprint

nt Retrospecti

"The Sprint
improvement
prior to the n
Proportionate

cal syntax

5 Roles

n be described

Product Own

Scrum

sociated with

Scrum is a 15
n for the nex
he work that c

Review

associated wit

eview is held
ng the Sprint

d on that and
hat could be d
ck and foster c

Retrospec

ive is associat

Retrospective
ts to be enacte
next Sprint P
ely less time is

d as patterns:

er

the

5-minute time
t 24 hours. T
ould be done b

Fig

th the Track Pr

at the end of
Review, the
any changes

done. This is a
collaboration."

Fig

tive

ted with the Su

e is an oppo
ed during the n
Planning Meet
s allocated for

Figure

e-boxed event
This is done
before the nex

gure 74 – Da

rogress activi

f the Sprint to
Scrum Team
to the Produc

an informal me
" [Schwaber a

gure 75 – Sp

upport the Tea

ortunity for th
next Sprint. T
ting. This is
r shorter Sprin

e 76 – Sprint

for the Deve
by inspecting

xt one." [Schw

aily Scrum

ty space.

o inspect the
and stakehol

ct Backlog du
eeting, and th

and Sutherland

print Review

am activity sp

he Scrum Te
The Sprint Retr

a three-hour
nts." [Schwabe

t Retrospect

elopment Team
g the work s
waber and Sut

Increment an
ders collabora

uring the Spri
e presentation

d 2011]

w

ace.

eam to inspec
rospective occ
time-boxed m

er and Sutherl

tive

 Es

m to synchro
since the last
therland 2011]

nd adapt the P
ate about wha
int, attendees
n of the Increm

ct itself and
curs after the
meeting for o
land 2011]

ssence, Versio

onize activitie
Daily Scrum

]

Product Backl
at was done i
collaborate o

ment is intend

create a pla
Sprint Review

one-month Sp

on 1.0

s and
m and

log if
in the
on the
ded to

n for
w and
prints.

Essence,

C.1.1.5

Textual

role P

and th
organi

}

C.1.1.5

Textual

role D

delive
each S

}

C.1.1.5

Textual

role S

enacte
theory
Team.

their
Master
the Sc

}

C.1.2

C.1.2.1

Graphic

, Version 1.0

Development

Scrum Master

5.1 Produc

syntax

roduct Ow
"The Prod
he work of
zations,
(...conti

5.2 Develo

syntax

Developmen
"The Deve
ering a po
print. On
(...conti

5.3 Scrum

syntax

crum Mast
"The Scru
ed. Scrum
y, practic

The Scrum
interacti
r helps ev
rum Team.
(...conti

User

1 Practic

cal syntax

t Team (of dev

r

ct Owner

wner {
duct Owner
f the Deve
Scrum Tea
nues...)"

opment Tea

nt Team {
elopment T
otentially
nly member
nues...)"

Master

ter {
um Master
Masters d
ces, and r

m Master h
ons with
veryone ch

nues...)"

Story

ce

velopers)

r is respo
elopment T
ams, and i

am

Team consi
y releasab
rs of the

is respon
do this by
rules. The

helps thos
the Scrum
hange thes

Figure

onsible fo
Team. How
individual

ists of pr
ble Increm
Developme

nsible for
y ensuring
e Scrum Ma

se outside
m Team are
se interac

e 77 – User

or maximiz
this is d
ls.

rofessiona
ment of “D
ent Team c

r ensuring
g that the
aster is a

e the Scru
e helpful
ctions to

Story practi

zing the v
done may v

als who do
Done” prod
create the

g Scrum is
e Scrum Te
a servant-

um Team un
and which
maximize

ice

value of t
vary widel

o the work
duct at th
e Incremen

s understo
eam adhere
-leader fo

nderstand
h aren’t.
the value

the produc
ly across

k of
he end of
nt.

ood and
es to Scru
or the Scr

which of
The Scrum
e created

 129

ct

um
rum

m
by

130

C.1.2.2

C.1.2.2

Graphic

C.1.2.3

C.1.2.3

Graphic

C.1.3
The Esse
milestone

This sect

When rea
states, it
review gu

All the li

2 Work P

2.1 User S

cal syntax

3 Activit

3.1 Write U

cal syntax

Lifecy
ence Kernel en
e in the lifecy

tion provides i

A Unified Pro

A waterfall lif

A set of comp

A funding and

ading these se
can also add

uidance it see

fecycles are il

Products

Story

ties

User Story

ycle Exa
nables practic
cle.

illustrations o

ocess lifecycle

fecycle

plementary ap

d decision ma

ections one sh
d items to the
s fit.

llustrated usin

F

Figu

mples
es to define li

f a number of

e

pplication deve

aking lifecycle

hould bear in
e checklists, a

ng the templat

Figure 78 – U

ure 79 – Writ

ifecycles by s

f typical softw

elopment lifec

e

n mind that a
activities to fo

te shown in Fi

User Story

te User Stor

equencing a n

ware engineerin

cycles

lifecycle prac
formally revie

igure 80.

ry

number of pat

ng lifecycles:

ctice can do m
w the milesto

 Es

tterns, one for

more than just
ones and any

ssence, Versio

r each phase a

t arrange the
other plannin

on 1.0

and/or

alpha
ng or

Essence, Version 1.0 131

Figure 80 – Lifecycle template

Each Kernel Alpha and its states are shown in a vertical column with their creation at the top and their destruction at the
bottom. Milestones are shown as a vertical bar across the grid starting with an inverted triangle to represent the milestone
and continuing with a white line over which are shown the states to be achieved to successfully pass the milestone.
Where achieving a state is either recommended or optional the state is shown with a dashed outline and italicized text.

C.1.3.1 The Unified Process Lifecycle

An illustration of the Unified Process Lifecycle is shown in Figure 81. In the Unified Process Lifecycle there are four
phases: Inception, Elaboration, Construction and Transition. Each of these ends in a distinct milestone: Lifecycle
Objectives Milestone, Lifecycle Architecture Milestone, Initial Operational Capability, Project End. In Figure 81, the
milestones are represented by the blue inverted triangles but the names are suppressed to keep things simple.

132 Essence, Version 1.0

Figure 81 – The Unified Process lifecycle

C.1.3.2 The Waterfall Lifecycle

An illustration of a Waterfall Lifecycle is shown in Figure 82. In this case there are six phases: Initiation, Requirements,
Analysis and Design, Implementation, Testing, and Deployment. Each of these ends in a distinct milestone, which in this
case are not named.

Essence, Version 1.0 133

Figure 82 – A Waterfall lifecycle

Of most interest here are:

1. The fact that there is no work on the system itself until the Analysis and Design Phase at the earliest.

2. Different team formations are used for each phase and so the state of the team keeps getting set back to formed
with the hope that the new team will be collaborating and performing before the end of its phase.

3. The Requirements are sufficiently described by the end of the Requirements Phase and then not progressed
again until the Testing Phase.

C.1.3.3 A set of complementary application development lifecycles

The Kernel can be used in much more subtle ways than in the previous two examples. It is not un-common for
application development organizations to need multiple lifecycles to cope with the different types and styles of
development that they undertake. Figure 83 shows four complementary lifecycle models illustrating the typical demands
made upon an application development organization. This example is taken from a real software development
organization and uses their names for the four lifecycle models.

134 Essence, Version 1.0

Figure 83 – Different types of development need different methods and lifecycles

Each lifecycle model is supported by a method, each of which is built on the same kernel, many of which share the same
practices, and each of which has its own lifecycle. The four lifecycles are shown in Figure 84. Here the four lifecycles are
deliberately shown in a single diagram to make the differences in the arrangements of the states easily visible.
Unfortunately this makes the wording very hard to read. If you are interested in the details of the figures they are
repeated at a larger size in Figure 85, Figure 86, Figure 87 and Figure 88.

Figure 84 – Four complementary lifecycles to support application development

Essence, Version 1.0 135

The interesting things to note here are:

1. The different starting points of the different lifecycles. In this case much of the preparation work for standard
developments is done outside the Application Development project; hence the fact that the Opportunity is value
established, the Requirements are bounded and the System is architecture selected before the standard method is
used.

2. The way that maintenance doesn’t start until there is a usable system, and Support doesn’t start until there is an
operational System. These two methods are very focused with the Maintenance lifecycle only supporting small
changes and not allowing architectural change. If you want to change the architecture you must apply either the
Exploratory or the Standard lifecycles and their supporting methods.

3. The different end points of the different lifecycles. For example Transition is optional in the Exploratory method
and the Support method continues until the system is retired.

4. The Standard lifecycle is called standard as this is the default lifecycle for the teams to follow.

Figure 85 – The Exploratory lifecycle

136 Essence, Version 1.0

Figure 86 – The Standard lifecycle

Figure 87 – The Maintenance lifecycle

Essence, Version 1.0 137

Figure 88 – The Support lifecycle

C.2 Composing Practices into Methods
<This will be provided as an Annex update for the March meeting.>

C.3 Enactment of Methods
<This will be provided as an Annex update for the March meeting.>

