
SEMAT – Expectations from a Heterogeneous
Software Development Organization

Martin Naedele
Industrial Software Systems

ABB Corporate Research
Baden-Dättwil, Switzerland
martin.naedele@ch.abb.com

Brian Robinson
Industrial Software Systems

ABB Corporate Research
Raleigh, NC, USA

brian.p.robinson@us.abb.com

Abstract— This position statement describes the situation and
constraints of software development in ABB as an example for
a large corporation producing software-based products, our
experiences with software process improvement in the past,
our current approach based on modular software engineering
practices, and our resulting expectations on the SEMAT
initiative.

I. SITUATION AND CHALLENGES

Many advances have been made in software engineering
in recent years. These advances have led to the creation of a
large number of new software engineering techniques that
address specific problems encountered in software
development. Unfortunately, many of these problems still
exist in industry, due to a low industrial adoption rate of new
techniques. A key issue in industrial adoption involves
determining the overall benefit that a technique will have and
under what conditions and restrictions a new technique can
be applied [4], [6]. Software development organizations,
especially those where software is only a support technology,
have limited time and money available for determining
which of the available techniques will have a positive
benefit. Therefore, industrial companies have to have
confidence in the results shown by new techniques.

A. Company Background

ABB is a large multinational company with globally
distributed business and software development activities.
ABB products include components of critical infrastructures,
such as industrial control systems and power grid
management systems.

B. Characteristics of SW Development in ABB

Due to the wide spectrum of automation products that
ABB supplies, our software development organizations are
extremely heterogeneous. The development organizations in
ABB range in size from three person development teams, for
small embedded products, to organizations with several
hundred software developers. ABB products range from
small performance-constrained embedded devices to large,
wide-area distributed systems. These products and systems
include soft and hard real-time systems, as well as products
developed towards safety standards, such as IEC61508. Most
industrial customers want products that will have a multi-
decade lifetime with as little change as possible, due to the

inherent risk of injecting defects when upgrading software
and the cost incurred when a prodcution system is stopped.
On the other hand ABB also offers applications where
customers demand frequent updates with new features.

 With an increasing demand for vertical and horizontal
integration (such as remote service), the traditional
separation between software development for products
delivered to a customer and for internal information systems
and business IT of ABB as vendor is disappearing rapidly,
therefore an alignment of software development approaches
between the product R&D and business IT organizations is
desirable.

C. Challenge

In order to increase efficiency and reduce costs, ABB
aims at harmonizing its software development activities,
which have developed based on the heterogeneity of the
different development groups, as described above, as well as
a corporate history characterized by mergers and
acquisitions. By harmonizing tools and processes, ABB
intends to reduce training effort, facilitate the moving of
development staff between different organizations, reduce
tooling costs, and continuously improve development
efficiency and quality through the use of best practices.

II. HISTORY

ABB has started dedicated software engineering
improvement efforts more than a decade ago with the
creation of the ABB Software Process Improvement (ASPI)
initiative, modeled around CMMI and driven by ABB
Corporate Research. While this initiative did lead to
increases in process maturity and measurable improvements
in quality in ABB [2], the process-oriented approach had a
large overhead and focused on what to do, not how to do it.
The top-down nature of most global process improvement
initiatives caused mismatches with the needs of the
individual development organizations and thus limited their
buy-in.

III. CURRENT APPROACH

Recognizing the opportunities of further improvements in
ABB’s software engineering capability and, based on the
learnings and experiences of the earlier initiative, ABB
developed a different approach two years ago. This approach
focuses on principles and practices instead of process.

A. Software Engineering: a Set of Practices and Principles

Process-based improvement initiatives, such as CMMI,
tend to focus heavily on what must be done, when it should
be done, and who should do it. What it usually fails to
address is how it should be done. Yet, for most software
development organizations, the details of how to do it best
are what are needed for real improvement. For example, look
at code reviews. It is a very simple concept, yet many people
perform them poorly and adoption of this technique in
industry is quite low. At ABB, we ran a set of workshops
that included why we should perform code reviews and how
to perform them effectively. The feedback from these
workshops showed that many developers were not using
code reviews to look for low level defects, but rather only to
debate functionality or design choices among the
development team.

Instead of focusing on heavyweight processes, our new
approach involves identifying simple key principles that
describe what must be done in our development projects to
be successful. The majority of the focus goes into developing
a set of practices that detail how these principles can be met
by development teams around ABB. These practices
represent a number of possible techniques that have been
used successfully in other industries or projects. In this way,
we do not prescribe a “one size fits all” solution, but rather
identify many effective techniques and tools that could be
used, and work with the development teams to find the ones
that fit the product and people best.

At the top level, areas of software engineering, such as
requirements or testing, are listed as process areas in the
ABB Software Engineering Framework, shown in Figure 1.
Each of these process areas is then broken down into a small
set of key Principles that describe what must be done in
these areas. These principles are single sentence statements
that capture the essence of what must be done, as opposed to
heavyweight process descriptions. An example principle for
requirements engineering involves “Capturing, documenting,
and prioritizing customer, market, and technical needs.” This
single principle covers identifying and documenting needs,
as well as prioritization, in one statement. Finally, each
principle has a set of practices that can be used to address it.
For example, Gemba Visits and Kano Modeling can be used
to meet the requirements principle stated above.

B. Structure

A core team of representatives from all our development
organizations, supported by full-time staff from the CTO
office, as well as experts from Corporate Research, is
responsible for:

 Breaking down the software development lifecycle
into process independent, problem-oriented pieces,
which we call "process areas".

 Producing guidance for practices, including
methods, tools, and metrics that may be applied in
each process area.

 Selecting and deploying a common set of
development tools.

Based on this set of well documented and piloted
methods and tools for the different process areas, each
business unit selects those suitable for its own situation and
defines priorities of introduction. The representatives in the
central core team are the same persons that are also
responsible for, and spend most of their time in, driving
implementation in their units and achieving measurable
results. This ensures that the cross-unit work in the core team
is always business relevant.

Thus, today the individual development organizations
drive the improvements themselves based on their needs,
while the software engineering researchers in ABB
Corporate Research with expertise in, for example, testing
[6][8][11], defect prediction [5][10], requirements
engineering [7], safety [2], and security [1], develop
modular guidance on methods and tools, based on external
state-of-the-art, their own research, and experiments and
pilots in our development organizations.

Figure 1. ABB Software Engineering Framework

C. Status of Implementation

At this point, we have made considerable progress in our
principles and practices approach. We have guidance on
techniques, tools, and metrics, as well as training materials
for initial process areas, including requirements engineering,

verification/validation, and project planning. Deployment of
the principles and practices in our development units is
ongoing and some development organizations can already
show sustained measurable improvements over multiple
releases.

The organizations, and the developers themselves, have
been very positive about the initiative. In fact, the current
demand for the practices and principles for process areas not
yet started exceeds our expectations.

In addition to the practices and principles, a common
global tool environment supporting the development
lifecycle has been selected and deployed and is being
introduced to development units over time. The selected
tools are simple and extensible, allowing for small and large
development units to get benefit. Currently, requests from
additional units, especially smaller units that historically did
not have these kinds of tools, is also exceeding our initial
expectations.

Figure 2. Example Requirements Practices

IV. EXPECTATIONS TOWARDS SEMAT

We feel that the spirit of SEMAT is very much aligned
with the approach ABB has been taking over the past two
years towards organizing and driving our software
engineering capability. We expect that SEMAT activities
will be complementary to our own efforts to produce a set of
software engineering practices and principles for usage in
industrial settings.

A key need to our approach is for better empirical
evaluations of techniques. While most evaluations in the
research domain involve showing how technique A is
superior in all ways to technique B, a more pressing need is
to identify the specific criteria and circumstances that each
technique works best in. If we as a community can identify

instances where methods work well, and where they work
poorly, then adoption of these techniques can improve and
they can result in real benefit for the community and the
industry.

We hope that we can use SEMAT work products to
refine and augment our own collection of practices, as well
as the guidance for and against using those practices in
certain situation and context. We also expect that we can
provide relevant input to SEMAT based on the work we
have already done, and can provide feedback from
experimental evaluation within our R&D organization.

REFERENCES
[1] Brändle, M and Naedele, M. Security for process control systems an

overview from the vendor perspective. IEEE Security & Privacy, vol.
6, no. 6, pp. 24–29, 2008.

[2] Dagnino, A., Cordes, A. Coordinating Process Improvement in
Multiple Geographically Dispersed Development Organizations
Using CMMI. CMMI Technology Conference and User Group. 2004.
http://www.sei.cmu.edu/library/abstracts/presentations/Dagnino-
Cordes-2004.cfm

[3] Hu, Z. and Bilich, C. Experience with establishment of reusable and
certifiable safety lifecycle model within abb. In 28th International
Conference on Computer Safety, Reliability and Security (Safecomp
2009), September 2009.

[4] Kitchenham, B., Linkman, S. and Law, D. DESMET: a methodology
for evaluating software engineering methods and tools, IEEE
Computing & Control Engineering Journal, June 1997, pp. 120-126.

[5] Li, P., Herbsleb, J., Shaw, M., and Robinson, B. Experiences and
Results from Initiating Field Defect Prediction and Product Test
Prioritization Efforts at ABB Inc. In the Proceedings of the
International Conference on Software Engineering (ICSE), May
2006.

[6] Robinson, B. and Francis, P. A Defect-Driven Process for Software
Quality Improvement. In the proceedings of the International
Symposium on Empirical Software Engineering and Measurement
(ESEM), September 2008.

[7] Robinson, B. Ho, C-W. and Williams, L. Examining the relationships
between performance requirements and ”not a problem” defect
reports, in International Conference on Requirements Engineering
(RE 2008), September 2008.

[8] Robinson, B. and White L. On the Testing of User-Configurable
Software Systems Using Firewalls. Journal of Software Testing,
Verification and Reliability (JSTVR), to appear 2010.

[9] Shull, F., Carver, J., and Travassos, G. 2001. An Empirical
Methodology for Introducing Software Processes. In Proceedings of
the 9th ACM SIGSOFT International. Symposium on Foundations of
Software Engineering (September 10 - 14, 2001). ACM, New York,
NY, 288-296.

[10] Snipes, W., Robinson B., and Brooks, P. Approximating Deployment
Metrics to Predict Field Defects and Plan Corrective Maintenance
Activities. In International Symposium on Software Reliability
Engineering (ISSRE), November 2009.

[11] Zheng, J., Robinson B., Williams, L, and Smiley, K.. Applying
Regression Test Selection for COTS-based Applications. In the
Proceedings of the International Conference on Software Engineering
(ICSE), May 2006.

