
Let’s Build a Smarter Method
SDLC 3.0: A Complex Adaptive System of Patterns

Mark Kennaley

Fourth Medium Consulting Inc.

mark@fourth-medium.com

1. Introduction

Recent trends in software development suggest that an

appetite is growing for a change from the status quo of “fads

more akin to fashion industry than engineering discipline”. This

seems to be a reaction to the current state of affairs typified by

the following disturbing issues:

 Dogma, silver bullets, superstitious declaration, purist

interpretation;

 Silo’s, method branching, lack of integration; re-

invention;

 Branding , competitive, differentiation;

 Lack of trust inhibiting tacit knowledge transfer.

It is instructive to explore how we arrived at this point.

Subsequent to the “accidental waterfall” mis-interpretation of

Winston Royce’s 1970 Wescon paper, many attempts have

emerged to re-direct software engineering towards the intended

path. With the most identifiable roots being Evo or the Spiral

Model, two distinctly different and isolated lineages have

evolved – the Agile approaches and the Unified Process

approaches respectively. Each successive method has emerged

from new ideas and experiences, with a focus on rapid value

delivery in the Agile case, and risk-value balance in the Unified

Process lineage. Unfortunately, a competitive strategy has

accompanied these innovations leading to the branding of

“complete” methods. Rather than integration, the result has been

re-invention due to this isolation. One could rightly question

why such a branching anti-pattern (cascading branches) has been

allowed to fester for so long, noting that the isolated

communities must understand parallel development strategy and

ironically embrace continuous integration. Figure 1 illustrates

this situation and the need for a re-base of software development

method experience.

PioneersWaterfall

branch

Modern Software

Engineering Mainline

Misinterpretations Retire

Iterative Method Wars
SDLC 2.0 Generation

(many branches)
Fragmentation Retire?

1.0 (1970)

2001

Foundational

Integration

2010

rebase

SDLC 3.0 Generation

Foundational

Foundational

3.0

2002

2009

merge

Figure 1. SD Methodology Branching

This is the basis for the label of “SDLC 3.0”
1
. It is time to treat

software development experience capture the same as how we

treat evolving baselines of a software intensive system.

2. Integrating Modern Software Engineering

Methods

The current articulation of methods remains mostly anecdotal

and subjective. Additionally, when empirical evidence and

supporting models are sought, bodies of knowledge such as

Systems Thinking are mentioned only in passing, as in the case

of the Agile method Scrum. To go beyond this superficial

treatment, it is suggested that parallels to the level of study

undertaken by the likes of MIT’s System Dynamics Center

founded by Jay W. Forrester is required.

If we agree with the observation that software development

projects are indeed systems, the first step in applying System’s

Theory is to understand the block diagram of what has been

described as a complex adaptive dynamic system. For this, we

need a basis of decomposition – the fundamental building blocks

of the system we wish to study. One basis in which modern

software engineering approaches can easily be decomposed is

through a set of patterns. Such organizational patterns define the

essence of the proven solutions to software delivery problems

within given contexts. Indeed, others have suggested that the

approach to harmonize the various competing branded methods

and enable the harvesting of valuable experience is through the

decomposition into practices. Through such decomposition,

commonality can be identified, and immaterial duplications can

be eliminated such that a basis for trust can emerge and the

isolated communities can re-engage. Patterns represent a useful

level of abstraction above the fundamental elements of a kernel

meta-model such as SPEM or ISO 24744. Similarly, patterns

seem to be perceived as method community agnostic and

therefore highly likely to establish trust with respect to

embarking on integrating modern software engineering

experience. Unfortunately, the pattern movement that saw

moderate success in design and architecture achieved limited

momentum in the method engineering problem space. It is

contended that this movement should be revived as the basis for

harmonization of the fragmented method communities.

Figure 2 that follows represents a domain model of modern

software engineering practices. Such a “visual glossary”

identifies the synergies where practices are unique within their

communities, and where common ground exists that can enable

integration into a software engineering “mainline”.

mailto:mark@fourth-medium.com

One-piece

Flow

Timebox

Increment

User Story

Scenario

Use

Case

Iteration

Minimum

Marketable

Feature (MMF)

Pull-system JIT

WIP Limit

Cycle

Time

Deliverable-

based

ThroughputProductivity

Effectiveness Efficiency

30 day

Sprint

Real Options

LearningExit

Architecture

Decisions

Continuous

Improvement

7

Wastes

Kanban

Refactoring

70% rule

Working

Software

Risk-

confrontive

Visual

Modeling

Metaphor

Collaboration

Value

Stream

YAGNI

Agility

Emergent

Design

TDD

Kaizen Event
Gemba

Ginketsu

Continuous

Integration

Pair

Programming

Complexity

Traceability

MDD

Product

Owner

Single

Wringable

Neck

Value

Priortization

Poka-

yoke

Daily

Standup

Retrospective

Agile Community Practices

<<SCRUM, XP>>

Unified Process/MBASE Practices

<<OpenUP, RUP>>
Lean Practices

<<FDD>>

Spontaneous

Quality Circles

Integrated

Stakeholders

Iteration

Assessment

Risk-vs-Value

Phase

Assessment

Meta-

scrumVelocity

Points

Distributed

Governance

Chickens

& PIgs

Product

Backlog

Sprint

Backlog

Shippable

Product

2 week

Burndown

Scrum of

Scrums

Agile

Modeling

Visual

Controls

5 Why

Sustainable

Pace

Customer

Stability

Adaptive

Management

Responding

to Change

Total Cost

of Release

Takt

Time

Burnout

Phase

Objectives

Work-

cell

Test Early

Test Often

Product

Evolution

Perishable

Requirements

 / Design

Commit at

Last

Responsible

Moment

Cumulative

Flow

Diagram

Whole

Team

Co-

Location
Information

Radiator

Big

Visible

Charts

results

in a

enables

short

results summarized by

work

tracked in

updated

through

scaled

using may result

in

Code

Smells

< of

< is reasoned

through

eventually

results

in

Is

explained

by

made

efficient

through

treated

as the

priortized

by

< contains all types of

focus on

determines estimates

for

< scaled

through
measured

in

sized

using

slope

determines

^ serves

as an

synonymous

with

an example is

prevents

Optimum

Delivery

reduces

^ reduces

< facilitated by

Simple

Design

Collective

Ownership

Release

Plan

Coding

Standards

Small

Releases

Unit tests first

developed by

^

represents

minimum

involved

daily as

part of

Iteration

Plan

^ enhances

collaboration

are
defined

 by

Rolling-wave

Planning

Progressive

Elaboration

Incremental

Funding

^ establishesrelies on

negative

feedback

from

provide

flexibility for

performed

through

< performed through

releases

< performed

through

< represents minimum

represents

minimum
batching produces a

is the focus

through

< determines

Planning

Game/Poker

established

during

< establishes

rotation

produces
contributes

to

Is supported by

executes

tests from

^ an example

of

Iteration

Planning

enables exercising of

prioritized

to be
minimizesrealized

using

^ are instances of

drives

ranking for balances

^ provides design

provides

customer

reduces

^ facilitates

< evaluated

during

^ evaluated

during

facilitates

reasoning for

guides

frequency of

synonymous

with

synonymous

with

^ leverages

specializations from
< enables

^ facilitated

using

< address

concerns of

forms

scope for

^ priortized

early with

yields

impacts

results

from

embracesmaterializes

< forms scope for

< delivered

within are high-stakes

for a

converge on

^ avoids over-

processing

improves

< an

example of

^ removal

improvesavoids

waiting &

inventory

< leverages

results in

implements

Is one

type of

coordinates

shifts from Product

Development to

“manufacturing”

throughAndon

Lights

^ notifies

need for

leverages

pulls raw

materials

realizes

synonymous withToll-gate

Questions

^ Is identified

through

an

example

of

Lava Lamp

results sometimes

indicated using

^ an

example

of

DDD

Is measure

focus with

decomposed

through

Set-based

Design

is realized by

^ an example is

Relative

Sizing

used with

Jidoka

affects

affects

Waste

Aversion

Is the corollary

to a focus on

Scrum

Masterfacilitated by

Figure 2. Modern Software Development Integrated through Practices1

3. Foundation for Study – Control Systems

 Engineering

By definition, practices are techniques effective at achieving

a desired outcome. Similarly, patterns are solutions to problems

in context. The common thread of each of these definitions is

they form tactics that we employ to influence software

development investment outcomes. A cross-disciplinary body of

knowledge that applies the same concept for influencing the

outcome of dynamic systems is called Control Systems

Engineering. It would seem reasonable that we can apply

system’s analysis techniques from Control Theory to establish a

credible basis for when and why we choose one practice over

another, and why various practices add value. Yet, Control

Systems Theory has received no attention with respect to

enabling study of software engineering practices. This is in

contrast with other subfields of General Systems Theory like

Game Theory, CAS and Agent-based Modeling. Indeed, it is

arguable that the foundational study behind Jay W. Forrester’s

work and the work of his disciples is Control Engineering.

Figure 3 below illustrates the application of a typical

negative feedback control configuration to the study of software

development practices.

Figure 3. Project Delivery System1

The benefits of this approach for grounding the system of

practices we need to study is the lengthy history of practical

application, and the rigorous suite of analytical and

mathematical tools at our disposal. One such mathematical tool

leveraged within Classical Control Theory is the Laplace

Transform, which is used to enable easier analysis of systems in

the frequency domain than with that of the time-domain analysis.

Leveraging these tools, it is suggested that the starting point for

applying Control Engineering for the study of software

development delivery systems is Proportional-Integral-

Derivative Control (PID Control) which is the bread-and-butter

for industrial process control. Figure 4 illustrates the common

configuration.

Figure 4. PID Control

Through leveraging the Raleigh curve as a simple

approximation of the plant (the process block in the

previous figure), we arrive at the following transfer function,

which is the primary mathematical representation of the

system enabling study of the effects of pole placement on

system dynamics.

To analyze the dynamic influences of the various practices in a

PID control configuration, several classical control theory tools

are available. The first is Root Locus Analysis & Design, where

we can study such effects as transient response, stability and the

influence of various practices on the closed loop transfer

function. Figure 5 illustrates this graphical modeling technique:

Figure 5. Root Locus Analysis in s-plane1

Similar techniques leveraging the Fourier transform of the

system into the frequency domain is Bode Analysis. Through

this graphical technique, system robustness through assessment

of gain and phase margins are available to assess the result of

modifying practice-based control tactics or modifications to the

delivery system plant.

Figure 6. Bode Analysis in frequency domain1

Once Classical Control Theory is exhausted, we can move into

Modern Control Theory leveraging Linear Algebra and

Stochastic Differential Equations. Indeed, Adaptive Non-Linear

Control serves as a concrete basis by which we can study the

dynamic effects of our practice “control tactics”.

References

[1] Mark Kennaley, “SDLC 3.0: Beyond a Tacit Understanding

of Agile”, Fourth Medium Press, January 2010.

))((

))((
)(21

asass

zszsK
sH

0

)()()]([dtetfsFtf st
L

