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1.  Introduction 

Recent trends in software development suggest that an 

appetite is growing for a change from the status quo of “fads 

more akin to fashion industry than engineering discipline”.  This 

seems to be a reaction to the current state of affairs typified by 

the following disturbing issues: 

 Dogma, silver bullets, superstitious declaration, purist 

interpretation; 

 Silo’s, method branching, lack of integration; re-

invention;  

 Branding , competitive, differentiation;  

 Lack of trust inhibiting tacit knowledge transfer. 

It is instructive to explore how we arrived at this point.  

Subsequent to the “accidental waterfall” mis-interpretation of 

Winston Royce’s 1970 Wescon paper, many attempts have 

emerged to re-direct software engineering towards the intended 

path.  With the most identifiable roots being Evo or the Spiral 

Model, two distinctly different and isolated lineages have 

evolved – the Agile approaches and the Unified Process 

approaches respectively.  Each successive method has emerged 

from new ideas and experiences, with a focus on rapid value 

delivery in the Agile case, and risk-value balance in the Unified 

Process lineage.  Unfortunately, a competitive strategy has 

accompanied these innovations leading to the branding of 

“complete” methods.  Rather than integration, the result has been 

re-invention due to this isolation.   One could rightly question 

why such a branching anti-pattern (cascading branches) has been 

allowed to fester for so long, noting that the isolated 

communities must understand parallel development strategy and 

ironically embrace continuous integration.  Figure 1 illustrates 

this situation and the need for a re-base of software development 

method experience. 
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Figure 1.  SD Methodology Branching 

This is the basis for the label of “SDLC 3.0” 
1
.  It is time to treat 

software development experience capture the same as how we 

treat evolving baselines of a software intensive system. 

2.  Integrating Modern Software Engineering 

Methods  

The current articulation of methods remains mostly anecdotal 

and subjective.  Additionally, when empirical evidence and 

supporting models are sought, bodies of knowledge such as 

Systems Thinking are mentioned only in passing, as in the case 

of the Agile method Scrum.  To go beyond this superficial 

treatment, it is suggested that parallels to the level of study 

undertaken by the likes of MIT’s System Dynamics Center 

founded by Jay W. Forrester is required. 

If we agree with the observation that software development 

projects are indeed systems, the first step in applying System’s 

Theory is to understand the block diagram of what has been 

described as a complex adaptive dynamic system.  For this, we 

need a basis of decomposition – the fundamental building blocks 

of the system we wish to study.  One basis in which modern 

software engineering approaches can easily be decomposed is 

through a set of patterns.  Such organizational patterns define the 

essence of the proven solutions to software delivery problems 

within given contexts.  Indeed, others have suggested that the 

approach to harmonize the various competing branded methods 

and enable the harvesting of valuable experience is through the 

decomposition into practices.  Through such decomposition, 

commonality can be identified, and immaterial duplications can 

be eliminated such that a basis for trust can emerge and the 

isolated communities can re-engage.  Patterns represent a useful 

level of abstraction above the fundamental elements of a kernel 

meta-model such as SPEM or ISO 24744.  Similarly, patterns 

seem to be perceived as method community agnostic and 

therefore highly likely to establish trust with respect to 

embarking on integrating modern software engineering 

experience.  Unfortunately, the pattern movement that saw 

moderate success in design and architecture achieved limited 

momentum in the method engineering problem space.  It is 

contended that this movement should be revived as the basis for 

harmonization of the fragmented method communities. 

Figure 2 that follows represents a domain model of modern 

software engineering practices.  Such a “visual glossary” 

identifies the synergies where practices are unique within their 

communities, and where common ground exists that can enable 

integration into a software engineering “mainline”. 
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Figure 2.  Modern Software Development Integrated through Practices1 



3. Foundation for Study – Control Systems  

    Engineering  

By definition, practices are techniques effective at achieving 

a desired outcome.  Similarly, patterns are solutions to problems 

in context.  The common thread of each of these definitions is 

they form tactics that we employ to influence software 

development investment outcomes.  A cross-disciplinary body of 

knowledge that applies the same concept for influencing the 

outcome of dynamic systems is called Control Systems 

Engineering.  It would seem reasonable that we can apply 

system’s analysis techniques from Control Theory to establish a 

credible basis for when and why we choose one practice over 

another, and why various practices add value.  Yet, Control 

Systems Theory has received no attention with respect to 

enabling study of software engineering practices.  This is in 

contrast with other subfields of General Systems Theory like 

Game Theory, CAS and Agent-based Modeling.  Indeed, it is 

arguable that the foundational study behind Jay W. Forrester’s 

work and the work of his disciples is Control Engineering.   

Figure 3 below illustrates the application of a typical 

negative feedback control configuration to the study of software 

development practices.   

 

 
 

Figure 3.  Project Delivery System1 

 

The benefits of this approach for grounding the system of 

practices we need to study is the lengthy history of practical 

application, and the rigorous suite of analytical and 

mathematical tools at our disposal.  One such mathematical tool 

leveraged within Classical Control Theory is the Laplace 

Transform, which is used to enable easier analysis of systems in 

the frequency domain than with that of the time-domain analysis.   

 

 

 

 

 

Leveraging these tools, it is suggested that the starting point for 

applying Control Engineering for the study of software 

development delivery systems is Proportional-Integral-

Derivative Control (PID Control) which is the bread-and-butter 

for industrial process control.  Figure 4 illustrates the common 

configuration. 

 

 
 

Figure 4.  PID Control 

Through leveraging the Raleigh curve as a simple 

approximation of the plant (the process block in the 

previous figure), we arrive at the following transfer function, 

which is the primary mathematical representation of the 

system enabling study of the effects of pole placement on 

system dynamics. 

 

 

 

 

To analyze the dynamic influences of the various practices in a 

PID control configuration, several classical control theory tools 

are available.  The first is Root Locus Analysis & Design, where 

we can study such effects as transient response, stability and the 

influence of various practices on the closed loop transfer 

function.  Figure 5 illustrates this graphical modeling technique: 

 
Figure 5.  Root Locus Analysis in s-plane1 

 

Similar techniques leveraging the Fourier transform of the 

system into the frequency domain is Bode Analysis.  Through 

this graphical technique, system robustness through assessment 

of gain and phase margins are available to assess the result of 

modifying practice-based control tactics or modifications to the 

delivery system plant. 

 
Figure 6.  Bode Analysis in frequency domain1 

 

Once Classical Control Theory is exhausted, we can move into 

Modern Control Theory leveraging Linear Algebra and 

Stochastic Differential Equations.  Indeed, Adaptive Non-Linear 

Control serves as a concrete basis by which we can study the 

dynamic effects of our practice “control tactics”. 
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