
Tom@Gilb.com	 SEMAT	 Position	 paper.	 	 	

Page 1 of 3	

My Position: Tom Gilb (Tom@Gilb.com), Version 31Jan2010.

SOME BASIC CONCEPTS *
A software engineer is an engineer with specialty in software.
Software engineering is the discipline of making software systems deliver the
required value to all stakeholders.

Engineering is an Evolutionary Process, using practical Principles, in order to
determine, and identify the Means to deliver, the best achievable Performance and
Cost levels balance, for optimal Stakeholder satisfaction, in a complex risk-filled
environment.

Software refers to the ‘non-hardware’ aspects or components of a system.
A Softcrafter is a person who practices the craft of programming software for
computers
*http://www.gilb.com/tiki-download_file.php?fileId=25
Source: Planguage Glossary. For far more detail and far more concepts.

Assertion: As several have already pointed out: we need to agree on the very basic
concepts of software + engineering. In particular we need to carefully distinguish
between engineering, and the craft of programming. And several participants have
already, in my view, totally failed to do so. The people who are going to discuss
programming should join a different organization, “Improving Softcrafting” or
“Better Coding”. SEMAT is about software engineering.

Engineering Core: The core of all engineering is deeply reasoned by Billy Koen in
“DISCUSSION OF THE METHOD: Conducting the Engineer's Approach to Problem
Solving”, see paper at
http://www.cse.hcmut.edu.vn/~minhle/congtackysu_2008/Engineering_Method.pdf
I have paraphrased his definition in “Engineering’ above.

SOFTWARE SPECIAL?
The only distinction between software engineering, and all other engineering
disciplines, should be the soft engineering artefacts themselves, and corresponding
knowledge of their probable characteristics.

CENTRAL GUIDING ORACLE (what’s it all about?)
The central guiding principle, is that the software engineer works to deliver best and
sufficient value for resources, within constraints.

WHAT’S USEFUL TO TEACH AND DO?
Consequently any means – processes, rules, standards, principles, tools, etc. – that
currently contribute to that ‘value for resources’, are valid, interesting, and
useful software engineering components. Any provably better means, are better
where proven better: even if they are not currently popular or consensus. Even if
they have no scientific validation or long history yet. Naturally, promising methods
should be validated scientifically in the long term.

Tom@Gilb.com	 SEMAT	 Position	 paper.	 	 	

Page 2 of 3	

Kernel:
Overview: http://www.gilb.com/tiki-download_file.php?fileId=98
Paper: “Undergraduate Basics”

Concepts:
1. independent of cross references to them such as words, symbols.
See: http://www.gilb.com/tiki-download_file.php?fileId=25
And CE book (a subset) for practical example, 655 Concepts.

Principles:
1. eternal, powerful, general, practical, wisdom
See: http://www.gilb.com/tiki-download_file.php?fileId=352
For the CE Planguage Collection.

Measures:
1. A proven method for capturing knowledge about a discipline
2. absolutely essential to ‘engineering’, ‘management’, science, reasoning
3. a language to describe almost any
discipline artifact: processes, rules, principles, tools, etc.
A key to objectivity and clarity.
See: http://www.gilb.com/tiki-download_file.php?fileId=26
Scales of Measure Chapter 5 of CE.

Processes
1. logical steps of actions to capture wisdom, and define work
2. a way to transfer wisdom

See:
http://homepage.mac.com/tomgilb/filechute/%20%20Gilb%20Competitive%20Engine
ering%20Book%20copy%201.pdf The CE book, Processes every chapter.

Rules:
1. necessary powerful practices of engineering specification
2. a way to transfer wisdom
See:
http://homepage.mac.com/tomgilb/filechute/%20%20Gilb%20Competitive%20Engine
ering%20Book%20copy%201.pdf The CE book, Rules every chapter

Representations (any and all useful representations are fine): But
representations must include the ability to model all costs and qualities!

• Views
• Modelling
• Templates: see examples in CE book, URL above.
• Tools
• Icons: See Examples in Planguage Glossary, URL Above, and paper
• http://www.gilb.com/tiki-download_file.php?fileId=37&highlight=plicons
.

Tom@Gilb.com	 SEMAT	 Position	 paper.	 	 	

Page 3 of 3	

KEY CONCEPTS FROM THE 655 CONCEPT PLANGUAGE GLOSSARY

http://www.gilb.com/tiki-download_file.php?fileId=125

Software Concept *570 March 12, 2003
Software refers to the ‘non-hardware’ aspects or components of a
system.

• It specifically includes computer programs, data (computer readable
files and databases), and software documentation and plans (any form
of specification or plans made by people concerning software).

	

Software Engineer: Concept *571. July 12, 2002
A software engineer is an engineer with specialty in software.

• They are characterized by the ability to assemble software components
based on quantified attributes. This ability is aimed at the need to
meet multiple quantified requirement performance levels, within
specified resource constraints, and other constraint limitations.

• Consequently software engineers think in terms of measurable system
performance (including quality) characteristics, and costs for design,
implementation, decommissioning, adaptation, and operation. They
know how to access the multiple quantified attributes of a design
component and how to measure these attributes in the systems they
engineer.

Software Engineering Concept *572 March 12, 2003
Software engineering is the discipline of making software systems deliver
the required value to all stakeholders.

Software engineering includes determining stakeholder requirements, designing
new systems, adapting older systems, subcontracting for components (including
services), interfacing with systems architecture, testing, measurement, and
other disciplines. It needs to control computer programming and other software
related sub-processes (like quality assurance, requirements elicitation,
requirement specification), but it is not necessary that, these sub-disciplines be
carried out by the software engineering process, itself.

The emphasis should be on control of the outcome – the value delivered to
stakeholders, not of the performance of a craft.

The concept ‘required value’ (above) is used to emphasize the obligation of the
software engineer to determine the value or results truly needed by the
stakeholders, and not to be fooled by omissions, corruptions and
misunderstandings of the real world value.
	

