SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark

Dines Bjgrner’s Notes on SEMAT

Abstract

This note includes a position statement of the kind, I think, called for by Ivar Jacobsen

in connection with the SEMAT initiative.

Contents

1 Position Statement

1.1 Background
1.2 Kernel e
1.2.1 Software Development Techniques

1.2.2 Software Project Management
1.3 SEMAT Issue: Scope

A For Your Information

B Some Definitions
B.1 Method
B.2 Theory.
B.3 Formal Specification Language . . .
B.4 Engineering
B.5 Software Engineering
B.5.1 Definition of SE
B.5.2 An SE Dogma
B.5.3 The SE Triptych
B.6 SE Management
B.6.1 Software

C A SEMAT Kernel

C.1 Semiotics
C.1.1 Syntax
C.1.2 Semantics
C.1.3 Pragmatics

C.2 Abstraction & Modelling
C.2.1 Abstraction
C.2.2 Models & Modelling

C.3 Software Engineering Process Models
C.3.1 Domain Engineering
C.3.2 Requirements Engineering . .
C.3.3 Software Design

C.4 Management

C.4.1 Software Project Management
C.4.2 Software Product Management

DD W W W W

\]

© © o ®©

10
10
10
11
11
11
12

13
13
13
13
13
14
14
14
15
15
15
16
16
16
16

January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

Formal Specification Languages and Tools 17
D.1 Formal Specification Languages 17
D.2 Tools e e 17
Bibliographical Notes 18

CV: Dines Bjgrner 21

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 3

1 Position Statement

1.1 Background

I shall focus on what Daniel Jackson

e Daniel Jackson [29]:
A direct Path to Dependable Software
CACM, Vol. 52, No. 4, pp 78-88, April 2009.

calls Direct Paths to software development and the Direct Evidence that software meets
customer expectations and is correct with respect to requirements.

My position statemen t is, of course, heavily flavoured — read: biased — by almost 37
years of researching, teaching and directing software development projects that us formal
techniques (to wit: VDM [8, 9, 21] and RAISE [23, 24]) leading to recent publications [2, 3, 4, 6]:

e Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

e Dines Bjgrner. Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters
12-14 are primarily authored by Christian Krog Madsen.

e Dines Bjgrner. Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

e Dines Bjgrner. From Domains to Requirements — On a Triptych of Software Develop-
ment. Communications of the ACM, 53(4), 2010. Submitted December 2009.

My position on software project management is very much influenced by Watts Humphrey:

e Dines Bjgrner. Believable Software Management. FEncyclopedia of Software Engi-
neering, 1(1):1-32, 201. (Taylor & Francis, New York and London, edited by Philip
Laplante).

1.2 Kernel

I shall focus on two aspects of what I consider a kernel: the software development techniques
and the software project management aspects.1

1.2.1 Software Development Techniques

It is my position — as also outlined in Appendix Sect. B (Pages 8-16) — that software devel-
opment can and should be based on the use of formal techniques, whether “formal techniques
"lite” 7, i.e., systematically, rigorously or formally?.

1Section B.5 on page 10 deals with software development techniques and Sect. C.4 on page 16 deals — briefly
— with software project management.
2 Appendix Sect. B.4 on page 10, Comment 9, defines the terms: ‘systematically’, ‘rigorously’ and ‘formally’.

4 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

It is my position that many/most of the prevailing ‘methods™ today can “smoothly” be
made to fit the Triptych paradigm of software engineering (from domains via requirements to
software design) outlined in Appendix Sects. B.5.1-B.5.3.

Comment 1

Many SEMAT “followers” may very well “shrink” away from my stating the above.
So be it. But | see no other viable alternative when it comes to asking for software
development to be pursued on a theoretical basis.

The formal techniques listed in Appendix Sect. D.1 on page 17 represent 40 years of
academic research. Many are deployed in European software houses — to a smaller or
larger extent [32]. Most of the ‘methods’ listed in footnote ?? can be rather smoothly
subsumed by the formal techniques of Appendix Sect. D.1 on page 17*

End of Comment 1

I refer to the recently published collection [10].

1.2.2 Software Project Management

It is my position that the formal methods listed in Appendix Sect. D.1 on page 17 (with a few
listed in Footnote 4) can all fit into the management principles of Watts Humphrey’s CMM,
see my paper on this: [5].

Comment 2

Since, for example Watts Humphrey's CMM concepts of process assessment and pro-
cess improvements are commensurate with the formal methods listed in Appendix
Sect. D.1 on page 17, | see no reason why many other management techniques can-
not be so adapted.

End of Comment 2

Comment 3

No process model, no development approach can be scientifically proved to address
the issues raised by Capers Jones in his 20 December 2010 (14:47 CET) e-mail:
Unstable, changing requirements = 95% of cases

Inadequate quality control and poor quality measures = 90%

Inadequate progress tracking = 85%

Inadequate cost and schedule estimating = 80%

False promises by outsource marketing and sales personnel = 80%

A e

Rejecting good schedule estimates and replacing them with arbitrary dates = 75%

3 such as (alphabetically listed) agile, aspect-oriented, chaos model, evolutionary development, evolution-

ary prototyping, ICONIX Process (UML-based object modeling with use cases), incremental funding methodol-
ogy, iterative processes, model driven development, prototyping, service-oriented modeling framework, software
development rhythms, top-down and bottom-up design, Unified Process (UML), user experience, V-model, wa-
terfall, XP (extreme programming), etcetera.

4A||oy, Event B, RAISE, VDM, Z etcetera.

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark

7. Informal, unstructured development = 70%

8. Inexperienced clients who can’t articulte requirements = 60%

9. Inexperienced project managers = 50%

10.
11.
12.

Inadequate tools for quality, static analysis, plus lack of inspections = 55%
Reusing materials filled with bugs = 30%

Inexperienced, unqualified software engineering teams = 20%

But, one-by-one, one can argue, for each formal methods approach the extent to
which it “solves” the issues raised by Capers Jones.

Similarly one can argue that the desirable (2025) software project characteristics
listed (also) by Capers Jones in his position paper of 22 Decmber 2010 can be
achieved by these formal techniques:

© X% NS ¢k N

~o~N N N
g S

The cost of innovation and new features.

The cost of renovating legacy applications.

The cost of customer support after deployment.

The cost of creating and utilizing reusable components.
The cost of meetings and communications.

The cost of avoiding security flaws.

The cost of learning and training.

The cost of project management.

The cost of requirements changes.

The cost of producing English words.

. The cost of programming or coding.

The cost of finding and fixing bugs.

. The cost of security flaws and attacks.
. The cost of cancelled projects.

15.

The cost of litigation for failures and disasters.

Thus I am in rather complete agreement with Watts Humphrey’s (7 January 2010
20:23 CET) position statement:

1. Goal: Everybody on the team knows the teams goal and what it takes to reach it.

. Roles: All members know their personal roles on the team as well as the roles of all the

other team members.

. Strategy: All team members know and agree with the overall team strategy and their role

in supporting it.

. Process: Everybody knows how to do their own job and how everybody else does their

jobs.

. Plan: Everybody knows what to do at all times and nobody stands around waiting to be

told their next assignment.

. Support: Everybody is aware of team workload and is prepared to pitch in and help

whenever somebody needs a hand.

. Status: Everybody knows precisely where the team stands at all times and is prepared to

make an extra effort whenever needed to achieve overall team success.

As well as his (differently numbered):

e Preparation Tasks:

6 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

1. Define the projects goals. What is it that the team is to do?

2. Define the team, its members, its roles, and its scope. What develop-
ment functions are represented on the team such as testing, software
development, hardware development, or systems engineering, and what
responsibilities will the team and its members have?

3. Establish the development strategy. How does the team intend to do the
job, are prototypes needed, how many releases are required, what cycles
are planned, and what is cycle scope and duration?

4. Produce a list the products to be produced and their essential charac-
teristics, like size, function, and principal specifications.

5. Produce the team plan. What are the tasks to be performed for each
process step and what effort will be required for each task and product
element?

6. Obtain management agreement to the team plan. Does management
agree with the teams plan, are revisions needed, and does the team agree
with the revisions?

e Development and Development Management Tasks:

9. The team performs the development work.

10. As the work proceeds, the team adjusts the plan and work assignments to
conform to project status and the team members current understanding
of the work.

11. The team regularly reports its progress to management.

12. The team monitors risks and issues and obtains management assistance
in resolving problems that it cannot handle.

13. The team dynamically replans the work as requirements, team member-
ship, product knowledge, and development status change.

e Assessment Activities:
14. Following completion of each major project milestone, the team analyzes

its performance, identifies areas for improvement, gathers data on project
results, and documents lessons learned.

End of Comment 3

1.3 SEMAT Issue: Scope

I cover a few of the SEMAT issues, such as outlined in Ivar, Bertrand and Richard’s 12 Januar
2010 (22:11 CET) e-mail.

My position is that some such direct path to software as that of, for example, the Triptych
approach with its attendant management issues sets a suitable scope. The ‘univerdals’ called
for in Ivar, Bertrand and Richard’s 12 Januar 2010 (22:11 CET) e-mail, I maintain, are those
od domain engineering, requirements engineering, software design, phases, stages, steps, etc.,
etc. as outlined in Sect. B, as well as the concepts of direct path and direct evidence as
outlined in Daniel Jackson’s 2009 CACM article [29].

End of Dines Bjgrner’s Position Statememt

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 7

A For Your Information

Since I may very well be only vaguely known to most of the SEMAT initiative supporter I
provide, in Sect. F on page 21, a CV.

Let me emphasize that through my work, during the 1980s, at Dansk Datamatik Center
(notably its Ada compiler development projects), and through my leadership, during the
1990s, founding an first UN Director, of UNU-IIST (www.iist.unu.edu), I have quite some
real experience with all issues of software engineering. As an educator I have been able to
challenger my MSc and PhD students in such ways that more than 100 of my MSc and PhD
theses candidates are now working for a number of software houses that my students have
founded (DDCI Inc., Maconomy, PDC (Prolog Development Center), C-Brain, etc., and core
departments of major software houses in Denmark (Terma Space Division, etc.).

I have with the DDC Ada, CHILL and RAISE projects, and with development
projects for the Philippine PTT, Vietnam ministry of finance, Chinese ministry of
railways, etc., instigated, led and concluded very successful software development
projects: on time, at cost, basically correct and fully meeting customers’ expec-
tations. These projects have all been based on the view and approach of software
engineering, including its use of formal techniques, outlined in this note.

My major references are:

1. Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

2. Dines Bjgrner. Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters
12-14 are primarily authored by Christian Krog Madsen.

3. Dines Bjgrner. Software Engineering, Vol. 8: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

4. Dines Bjgrner. Believable Software Management. FEncyclopedia of Software Engi-
neering, 1(1):1-32, 201. (Taylor & Francis, New York and London, edited by Philip
Laplante).

5. Dines Bjgrner. From Domains to Requirements — On a Triptych of Software Develop-
ment. Communications of the ACM, 53(4), 2010. Submitted December 2009.

I attach documents 4. and 5. when e-mailing the present note.

Document 5. is attached in two versions: a short, 8 page, for CACM (hopefully) and
a long, 11.5 page, with supporting formulas. The short, when contrasted to the long,
shows that one can indeed get quite far with serious software engineering without
necessarily formalising — but, as we all ought know by now, one cannot get as far as
with formalisations.

8 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

B Some Definitions
Three terms appears crucial to the SEMAT initiative: SE: software engineering, M: method,

and T: theory. We shall define these terms carefully, in the order: M, T and SE. Auxiliary
terms are also defined in this section.

B.1 Method

By a method we shall understand:

e a set of principles

for selecting and applying

e a number of techniques

for analysing a problem and

synthesizing

e an artifact (here software).
I refer to a recent paper:

e Daniel Jackson [29]:
A direct Path to Dependable Software
CACM, Vol. 52, No. 4, pp 78-88, April 2009.

I am of the strong conviction that some form of adoption by the SEMAT initiative, of the
ideas brought forward in this paper, is crucial.

Comment 4

As already and abundantly noted by many SEMAT discussants, there are a great
variety of ‘software engineering cum software development methods’ “around”. Many
of these methods (M; = {mj,,mi,,...,m;,) are based on (no doubt) sound and
valid observations by industry practitioners. And some of these methods (M, =
{ma,,May, ..., Mq,,) are based on (no doubt) sound and valid theoretical research
by university academics. It seems that neither M; € M, nor M, € M; is the case,
and that some would say that M;N\M, = {}. | reckon that the Agile, Aspect,

., UML methods belong to M;, and | reckon that the Event B, RAISE, VDM,
Z methods belong to M,. It is clear to me that the Event B, RAISE, VDM, Z
methods all have a theoretical foundations. It is not clear to me whether any or all of
the Agile, Aspect, ..., UML possess such a foundation®.

End of Comment 4

5By using elipses in the listing Agile, Aspect, ..., UML I can, of course, always claim this “lack” of
foundation!

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 9

B.2 Theory

By a theory shall understand:

e a proof system consisting

— of axioms

— and deduction rules
and

e a set of theorems (developed using the proof system).

Usually the proof system is related to a specific formal specification language.
The theorems are therefore usually statements about of what properties specifications are
aiming at specifying.

Comment 5

When the SEMAT initiative calls for “a theory” | assume that it means “a theoret-
ical foundation”. An engineering approach, an engineering method, when based on
a theoretical foundation, need not imply that the practitioners of this method need
understand the usually mathematical foundations of such a theory. Aeronautics en-
gineering is based on aerodynamics. The aeronautics engineer need only once have
understood the natural science of aerodynamics. In her professional life the aeronautics
engineer uses tools and techniques that build on the natural science of aerodynamics.
These aeronautics engineer tools and techniques themselves require that the aeronau-
tics engineer knows the related mathematics (Navier Stokes [differential] equations,
etcetera). For the software engineer | envisage the kind of tools and techniques that
will be mentioned in this note: specification languages and proof systems, respectively
abstraction, modelling, formal testing, model checking, verification, etcetera.

End of Comment 5

A theory must necessarily fulfill (a number of) the following criteria:

e Logically consistent

e Consistent with accepted facts

e Testable

e Parsimonious

e Consistent with related theories

e Interpretable: explain and predict

e Pleasing to the mind (Esthetic, Beautiful)

e Useful (Applicable)

10 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

B.3 Formal Specification Language

Comment 6

We take it as an accepted fact that a software engineering method that needs a theory
(i.e., satisfies the SEMAT paradigm, includes the use of formal specification languages,
even, and usually, in a “lite”-weight fashion: not asking the software engineer to “do
math” all day long !

End of Comment 6

By a formal specification language we shall understand
e a formal,
e ie., mathematical

definition of

e a syntax of that language,
e a semantics for that language, and

e a proof system for that language.

Comment 7

Section D lists a number of formal specification languages (Sect. D.1 on page 17) and
tools (Sect. D.2 on page 17).

End of Comment 7

B.4 Engineering

e The engineer “walks the bridge”

e from science to technology

e in order to construct artifacts based on science,
e from technology to science

e in order to assess possible scientific properties of artifacts.

Comment 8
In this SEMAT note | advocate some form of use of formal techniques:

e not necessarily fully formal, that is, there is no need to formally state all cor-
rectness theorems to be proven, let alone prove them, but systematically, i.e.,
“formal methods lite”, where the most relevant domain, the requirements and
the software is formally specified, with hints of their relation — but probably just
that;

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 11

e or, when greater care is called for, rigorously, with crucial, core parts of the
domain, requirements and software design being subject to some analysis (model
checking and verification proofs),; or

o fully formal — where all phases, stages and steps are formalised, verified, etc.

Usually a systematic, “light-weight” approach using formal techniques suffices.
End of Comment 8

B.5 Software Engineering
B.5.1 Definition of SE
By software engineering I understand
e the engineering, that is the sciences and pragmatics

— applied in order to effectively construct effective software
— that is the right software, i.e., meets customer expectations and only those,

— and which leads to software that is correct with respect to customer requirements.

B.5.2 An SE Dogma

On the scientific side I, myself, is guided by the following approach to ensure that it is the
right software and that software is right:

e before software can be designed
e we must ensure that we have a robust understanding of its requirements,
e and to prescribe the right requirements

e we must ensure that we have a robust understanding of the underlying domain.

B.5.3 The SE Triptych

I therefore advocate [2, 3, 4, 6] a set of
e phases,
e stages and
e steps
of development basically “sequenced” through the phases of
e domain engineering,
e requirements engineering and
e software design.

Each phase, stage and step:

12 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

e results in documents,
e these documents are

— both informal, clear, say English texts (narratives)

— and accompanying formal specifications

with test, model-checking and formal verification documents,

— etcetera.

B.6 SE Management
e SE management is about

— the management of resources, their
% planning,
% scheduling,
* allocation,
* monitoring and
* control;
— the management of the logics of the developed artifacts:
* domain, requirements and software design documents and
x QA, quality assurance, etc.

e I refer to the article: [5]

— Dines Bjgrner
Believable Software Management
Encyclopedia of Software Engineering
Taylor & Francis, New York and London
edited by Philip Laplante, 2010

This article is based on Watts Humphrey’s concept of Capability Maturity Management.

— The article show that pragmatic, sound management concepts
— can be applied rigorously

— to formal techniques-based software developments

— such as those advocated by this SEMAT note.

B.6.1 Software
By software I shall understand
e not only

— the executable code (i.e., image)

— and its (possibly electronic) installation and user manuals
e but also all the documents that arose as a result of the development of this software:

— domain (D), requirements (R) and software (S) design specifications,

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 13

stake-holder docs., * descriptions,

* prescriptions,

*
% acquisition docs.,
* analysis docs.,

*

terminology docs., * design, etc.

— all R, R and S related tests
(test cases and test outcomes, whether successful or not),

— all D, R and S related model checks, and
— all D, R and S related theorems and their proofs;

e and all relevant manuals:

documents concerning portability and installation,

— maintenance manuals (adaptive, corrective, perfective and preventive,
— D, R and S development logbooks,

— quality assurance, process assessment and process improvement reports,

— and all related planning, allocation & scheduling as well as management docum-
ments.

14 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

C A SEMAT Kernel

By a ‘kernel’ for “SE methods needs theory” I shall understand a set of professional qualifi-
cations and the tools to support the professional deployment of these qualifications.

C.1 Semiotics

The professional software engineer, must, I advocate know what is meant by semiotics: the
confluence of syntax, semantics and pragmatics.

C.1.1 Syntax
Definition I

By syntax we shall, in the context of textual or diagrammatic (spoken, written, pro-
gramming, specification) languages understand the way in which linguistic elements
(as words or as boxes and arrows) are put together to form constituents (as phrases
or clauses or sub-diagrams). When dealing with systems such as the phenomeno-
logical structures of mechanical machinery, architectural buildings, or transportation
networks, or such as conceptual structures of the financial service industry, the health
care industry, transportation logistics we shall by syntax mean the way in which parts
of these structures relate to one-another and to the whole (aka. mereology).

The professional software engineer, must, I advocate know principles, techniques and tools of
defining and using various forms of formal syntax, incl. BNF, abstract syntax and XML.

C.1.2 Semantics
Definition II

By semantics we shall understand the relations between syntactic signs (words, terms)
and what they refer to and including theories of denotation, extension, naming, and
truth.

The professional software engineer, must, I advocate know principles, techniques and tools
of defining and using various forms of formal semantics: denotational and operational (say
transition system and SECD machine) semantics.

C.1.3 Pragmatics
Definition III

By pragmatics we shall understand the relation between signs or linguistic (or diagram-
matic) expressions and their users. Pragmatics is concerned with the relationship of
sentences to the environment in which they occur.

The professional software engineer, must, I advocate know principles of pragmatics in order
not to transgress the meta-linguistically different levels between syntax and semantics, at one
level, and pragmatics at another level, that is, in rder not to bring elements of confusion into
domain descriptions and requirements prescriptions.

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 15

Comment 9

We use words or diagrams in order to communicate or designate. We mean the
semantics of what has been communicated or designated. And pragmatics is why we
uttered the words in the first place.

End of Comment 9

C.2 Abstraction & Modelling

The professional software engineer, must, I advocate know of well-documented principles and
techniques for abstraction and modelling — as expressible both in natural language, i.e., En-
glish and in a suitable repertoire of formal specification languages, texttual and diagrammatic.

C.2.1 Abstraction

Comment 10

Abstraction is a tool, used by the human mind, and to be applied in the process of
describing (understanding) complex phenomena. Abstraction is the most powerful
such tool available to the human intellect. Science proceeds by simplifying reality.
The first step in simplification is abstraction. Abstraction (in the context of science)
means leaving out of account all those empirical data which do not fit the particular,
conceptual framework within which science at the moment happens to be working.
Abstraction (in the process of specification) arises from a conscious decision to ad-
vocate certain desired objects, situations and processes as being fundamental; by
exposing, in a first, or higher, level of description, their similarities and — at that
level — ignoring possible differences.

End of Comment 10

C.2.2 Models & Modelling

Comment 11

Models can be iconical, analogical, or analytical models. They can be descriptional,
or prescriptional models, and extensional or intensional models. Specifications are
what we write down, syntactucally. Models are what these specifications denote, i.e.,
their meaning.

End of Comment 11
Models span the spectrum between
1. property-oriented and
2. model-oriented

specifications.

The former emphasise logical properties; the latter mathematical structures. The former
could be said to be more proof-friendly; the latter to be more implementation-friendly. There
are many techniques to refining the former kind of specifications to the latter kind.

16 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

C.3 Software Engineering Process Models

Comment 12

We take it as a fundamental dogma — to be followed by the professional software
engineer — that software is developed in phases, stages and steps. In "ye olde days”
one referred to process models®. Common to all these is the notion of stages (phases or
steps) of development, from more abstract to more concrete. We shall try summarise
“all” of these approaches by listing the phases, stages and steps of a Triptych approach
to SE, one in terms of which many of the major ideas of each of the footnoted
(Footnote 6) process models can be understood. The “theoretical” Triptych model —
in its practical adaptations “smoothly” allow for several of the main ideas of footnoted
process models.

End of Comment 12

The professional software engineer, must, I advocate know the major principles, techniques
and tools of the enumerated items listed below.

C.3.1 Domain Engineering

1. Stake-holder liaison

2. Domain Acquisition and Analysis

3. Business Processes

4. Domain Modelling: Constructing Domain Descriptions
5. Model Analysis

a

(a) Testing

(b) Model-checking
)
)

(c) Verification

(d) Validation

C.3.2 Requirements Engineering

1. Stake-holder liaison
2. Requirements Acquisition and Analysis
3. Business Process Re-engineering

4. Requirements Modelling: Constructing Requirements Prescriptions

5. Model Analysis

5_ such as (alphabetically listed) agile, aspect-oriented, chaos model, evolutionary development, evolution-
ary prototyping, ICONIX Process (UML-based object modeling with use cases), incremental funding methodol-
ogy, iterative processes, model driven development, prototyping, service-oriented modeling framework, software
development rhythms, top-down and bottom-up design, Unified Process (UML), user experience, V-model, wa-
terfall, XP (extreme programming), etcetera.

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark

a) Testing

(a)

(b) Model-checking
)
)

Verification

(c
(d) Validation

C.3.3 Software Design

Et cetera.

More to come.

C.4 Management
C.4.1 Software Project Management

Reference is made to [5, Bjgrner: Believable Software Management).

More to come.

C.4.2 Software Product Management

More to come.

17

18 January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

D Formal Specification Languages and Tools
D.1 Formal Specification Languages

e Alloy [30]

e B, Event B [1]

o CSP [27]

e DC (Duration Calculus) [42]

e MSC (Message Sequence Charts) [28]

o Petri Nets [37]

e RAISE, RSL [23, 24, 2, 3, 4]

e Statecharts [26]

e TLA+ (Temporal Logic of Actions “+7) [31]

e VDM, VDM-SL [8, 9, 21]

o Z [41]

D.2 Tools

Besides the usual tools “surrounding” most formal specification languages, to wit:

e Alloy [30] o TLA+ [31]

e B, Event B [1] e VDM-SL [21]
e FDR/CSP [38, 22]

e RSL [24] * Z 4]

there are a number of language-independent tools for model-checking and proofs:
e NuSMV (New SMV)
http://en.wikipedia.org/wiki/NuSMV

e PVS (Prototype Verification System)
[34, 35, 36, 39, 40]

e The SPIN Model-checking Verification System) [25]

e STeP (Stanford Temporal Logic Prover &c.) [33]

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 19

E

Bibliographical Notes

References

[1]

2]

8]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-
B: System and Software Engineering. Cambridge University Press, Cambridge, England, 1996
and 2009.

Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006.

Dines Bjgrner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12-14 are
primarily authored by Christian Krog Madsen.

Dines Bjgrner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

Dines Bjgrner. Believable Software Management. Encyclopedia of Software Engineering,
1(1):1-32, 201. (Taylor & Francis, New York and London, edited by Philip Laplante).

Dines Bjgrner. From Domains to Requirements — On a Triptych of Software Development.
Communications of the ACM, 53(4), 2010. Submitted December 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering.
JAIST Press, March 2009. The monograph contains the following chapters: [12, 13, 14, 15,
11, 16, 17, 18, 19, 20].

Dines Bjgrner and CIliff B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

Dines Bjgrner and Cliff B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

Paul Boca, Jonathan P. Bowen, and Jawed |. Siddiqi, editors. Formal Methods: State of the
Art and New Directions. Springer, London, UK, 2010. ISBN 978-1-84882-735-6.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering,
chapter 5: The Triptych Process Model — Process Assessment and Improvement, pages
107-138. JAIST Press, March 20009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering
[7], chapter 1: On Domains and On Domain Engineering — Prerequisites for Trustworthy
Software — A Necessity for Believable Management, pages 3-38. JAIST Press, March 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering
[7], chapter 2: Possible Collaborative Domain Projects — A Management Brief, pages 39-56.
JAIST Press, March 20009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering
[7], chapter 3: The Rdle of Domain Engineering in Software Development, pages 57-72.
JAIST Press, March 20009.

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering [7],
chapter 4: Verified Software for Ubiquitous Computing — A VSTTE Ubiquitous Computing
Project Proposal, pages 73-106. JAIST Press, March 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering
[7], chapter 6: Domains and Problem Frames — The Triptych Dogma and M.A.Jackson's PF
Paradigm, pages 139-175. JAIST Press, March 20009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering [7],
chapter 7: Documents — A Rough Sketch Domain Analysis, pages 179-200. JAIST Press,
March 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering [7],
chapter 8: Public Government — A Rough Sketch Domain Analysis, pages 201-222. JAIST
Press, March 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering
[7], chapter 9: Towards a Model of IT Security — — The ISO Information Security Code of
Practice — An Incomplete Rough Sketch Analysis, pages 223-282. JAIST Press, March 2009.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering [7],
chapter 10: Towards a Family of Script Languages — — Licenses and Contracts — Incomplete
Sketch, pages 283—-328. JAIST Press, March 2009.

John Fitzgerald and Peter Gorm Larsen. Modelling Systems — Practical Tools and Techniques
in Software Development. Cambridge University Press, Cambridge, UK, Second edition, 2009.

Formal Systems Europe. Home of the FDR2. Published on the Internet:
http://www.fsel.com/, 2003.

Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Sgren Prehn, and Kim Ritter Wagner. The RAISE Specification Lan-
guage. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Sgren Prehn,
and Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead, England, 1995.

J.-C. Grégoire, G. J. Holzmann, and D. Peled, editors. The SPIN Verification System,
volume 32 of DIMACS series. American Mathematical Society, 1997. ISBN 0-8218-0680-7,
203p.

David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274, 1987.

Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com /csp-
book.pdf (2004).

ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996, 1999.

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 21

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

Daniel Jackson. A Direct Path to Dependable Software. CACM: Communications of the
ACM, 52(4):78-88, April 2009.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

Leslie Lamport. Specifying Systems. Addison—-Wesley, Boston, Mass., USA, 2002.

Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying Formal Specification in
Industry. IEEE Software, 13(3):48-56, May 1996.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems: (vol.1: Specifica-
tions, vol.2: Safety). Addison Wesley, 1991 and 1995.

S. Owre, J. Rushby, and N. Shankar. PVS: Prototype Verification System. In 11th Intl. Conf.
on Automated Deduction (CADE-11), LNCS 607; Lecture Notes in Computer Science, pages
748-752, Saratoga, NY., USA, 1995. Springer-Verlag.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

Wolfang Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien.
Institut fur Informatik, Humboldt Universitait zu Berlin, Unter den Linden 6,
10099 Berlin, Germany, 1 Oktober 2009. 276 pages. http://www2.informatik.hu-
berlin.de/top/pnene_buch/pnene_buch.pdf.

A. W. Roscoe. Model checking CSP, pages 353-378. Prentice-Hall Intl., 1994.

N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, February 1993. Also appears in Tutorial Notes, Formal Methods
Europe '93: Industrial-Strength Formal Methods, pages 357-406, Odense, Denmark, April
1993.

N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real-
—time Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer—
Verlag, 2004.

22

F

January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

CV: Dines Bjgrner

e Family &c.: Dines Bjgrner (DB) was born in Odense, Denmark, 4 October 1937. His father

had an MSc degree in Mathematics (from Copenhagen University, 1931) and his mother a BA
degree in Nordic and Modern English/America Literature (also from Copenhagen University,
1929). Since 1965 DB has been married to Kari Skallerud Bjgrner (Oslo, Norway). They
have two children, Charlotte and Nikolaj, and five grandchildren.

Educational Background: DB graduated, in 1956, with a senior high school degree in
Mathematics and Natural Sciences from the Arhus Cathedral School (founded in 1142).
DB graduated in January 1962 with an MSc in Electronics Engineering and with a Ph.D. in
Computer Science in January 1969 from the Technical University of Denmark (founded by
Hans Christian @rsted in 1828).

IBM Career: DB joined IBM in March 1962 at their Nordic Laboratories (founded by Cai
Kinberg) in Stockholm, Sweden (where DB also first met Jean Paul Jacob and Gunnar
Wedell). DB was transferred to the IBM Systems Development Division (IBM SDD) at San
Jose, California, USA, in December 1963. While doing his Ph.D. (September 1965—January
1969) DB was a lecturing consultant to IBM's European Systems Research Institute (ESRI)
at Geneva, Switzerland (where DB received valuable guidance from Carlo Santacroce and
where DB's friendship with Gerald Weinberg started) (1967-1968). In 1969 DB worked at
IBM's Advanced Computing Systems (IBM ACS) Laboratory, Menlo Park, California, and,
later that year until early 1973 at IBM Research, San Jose (again Jean Paul Jacob became
a colleague). Transferred to the IBM Vienna Laboratory (directed then by Heinz Zemanek),
Austria, DB resigned from IBM in August 1975 to return to Denmark after basically 13
years abroad.

Career Qutside and After IBM: During his stay at IBM Research DB was a visiting
lecturer, for several quarters, at University of California at Berkeley (1971-1972), instigated
by Lotfi Zadeh whom DB considers his main mentor and for whom DB has the fondest
regards. DB was a visiting guest professor at Copenhagen University in the academic year
1975-1976, before taking up his chair in September 1976 at the Technical University of
Denmark (DTU). During the summer semester of 1980 DB was the Danish Chair Professor at
the Christian-Albrechts University of Kiel, Germany — hosted by Prof. Dr. Hans Langmaack.
Together with a colleague, Prof. Christian Gram, DB instigated the Dansk Datamatik Center
(DDC) in the summer of 1979. During the 1980s DB was chief scientist of DDC. In 1982-
1984 DB was chairman of a Danish Government (Ministry of Education) Commission on
Informatics. DB was the founding and first UN Director of UNU-IIST, the United Nations
University's International Institute for Software Technology, located in Macau. DB was
a visiting professor at NUS: National University of Singapore in the academic year 2004—
2005, and a research guest professor at JAIST, Japan Advanced Institute of Science and
Technology, Ishikawa Prefecture, Japan for basically the calendar year 2006 — where the
work reported in this monograph was begun. DB was a visiting professor at Université Henri
Poincaré and at INRIA/LORIA, Nancy, France, for two months: Oct.—Dec., 2007. During
the fall and spring of 2008-2009 DB was lecturing at the Techn. Univ. of Graz, Austria and
at University of Saarland, Saarbriicken, Germany (March 2009).

e Lectures and Graduates: DB has lectured and regularly lectures on six continents in almost

SEMAT: January 21, 2010; Dines Bjgrner, Fredsvej 11, DK-2840 Holte, Danmark 23

50 countries and territories and has advised more than 130 MSc’'s and almost two dozen
PhDs.

e Research &c. Work: At IBM DB first worked in the hardware (logic and systems) design
of such equipment as the IBM 1070 (Sweden), the IBM 1800 and IBM 1130 computers (San
Jose), and, finally, with Gene Amdahl and Ed Sussenguth, on the IBM ACS/1 supercomputer
(Menlo Park). At Research DB worked with the late John W. Backus and the late Ted Codd
on Functional Languages, resp. Relational Data Base Systems. At Vienna, DB, together with
such colleagues as Peter Lucas, the late Hans Beki¢, Kurt Walk, and Cliff B. Jones, worked on
a Denotational (—like) Semantics Description of PL/I while, with his colleagues conceiving,
researching, developing and using VDM (the Vienna software Development Method). At
DTU and at DDC, supported by the European Community, DB initiated several advanced
research & development projects: (1) Formal Semantics Description of and (2) full language
compiler for CHILL (the Intl. Telecommunications Unions Communications [C.C.I.T.T.] High
Level Language) — both significantly developed by Peter L. Haff (and the late Sgren Prehn);
(3) Formal Semantics Description of and (4) the first European US DoD officially validated
compiler for the US DoD Ada embedded systems programming language — with significant
and indispensable contributions by DB's colleague Dr. Hans Bruun and, again, the late
Sgren Prehn; (5) RAISE (Rigorous Approach to Industrial Software Engineering, headed
by the late Sgren Prehn and Chris George); (6) Formal Semantics Definition of VDM-SL
(the VDM Specification Language, Bo Stig Hansen and Peter Gorm Larsen); (7) ProCoS
(Provably Correct Systems) with, amongst others, Profs. Sir Tony Hoare (then Oxford, now
Microsoft Research, Cambridge, UK), Hans Langmaack (Kiel) and Ernst-Riidiger Olderog
(Oldenburg) and others.

o UNU-IIST: At UNU-IIST DB had a rather free hand, and was able, with a small team of
excellent colleagues (Prof. Zhou Chaochen (Academician, the Chinese Academy of Science),
the late Sgren Prehn, Chris W. George, Richard Moore, Tomasz Janowski, Dang Van Hung,
Xu Qi Wen and Kees Middelburg), to further explore the research issues still occupying DB's
interest, and to apply them (i.e., test them out) in a number of joint R&D projects with
institutions in developing and newly industrialised countries [including newly independent
states] (Argentina, Belarus, Brasil, Cameroun, China, Gabon, India, Indonesia, Mongolia,
North Korea, Pakistan, Philippines, Poland, Romania, Russia, South Africa, South Korea,
Thailand, Vietnam, Ukraine, Uruguay, etc.).

e Societal Work: DB was a co-founder of VDM-Europe in 1987 and moved VDM-Europe
onto FME: Formal Methods Europe in 1991. DB co-chaired two of the VDM Symposia
(1987, 1990), and the International Conference on Software Engineering (ICSE) in 1989 in
Pittsburgh, Pennsylvania, USA. DB was chairman of the IFIP World Congress in Dublin,
Ireland in 1986, and was the instigator and General Chairman of the first World Congress on
Formal Methods, FM'99, in Toulouse, France, September 20-24, 1999. DB has otherwise
been involved in about 60 other scientific conferences.

e Awards &c.: DB is a Knight of The Danish Flag; is a member of Academia Europaea
(MAE) and was chairman of its Informatics Section (2004-2009); is a member of The
Russian Academy of Natural Sciences (MRANS [AB]), and of IFIP Working Groups 2.2
(1980-2004) and 2.3 (1980-2008). DB has received the John von Neumann Medal of the
JvN Society of Hungary and the Ths. Masaryk Gold Medal from the Masaryk University,

24

January 21, 2010. bjorner@gmail.com, www.imm.dtu.dk/~“db. SEMAT.

Brno, The Czech Republic. DB received the Danish Engineering Society's (IDA) Informatics
Division's (IDA-IT) first BIT prize, March 1999. DB was given the degree of honorary doctor
from the Masaryk University, Brno, The Czech Republic, in 2004. DB is an ACM Fellow
and an IEEE Fellow.

Publications: DB has authored more than 120 published papers and co-authored and co-
edited some 15 books and written three books [2, 3, 4, 7].

Research Interests: DB's research interests, since his Vienna days, have centered on pro-
gramming methodology: Methods as sets of principles for selecting and applying mathematics-
based analysis and construction techniques and tools in order efficiently to construct efficient
artefacts — notably software. DB sees his main contributions to be in the research, de-
velopment and propagation of formal specification principles and techniques. Currently
DB focuses on the triptych of domain engineering, requirements engineering and software
architecture and program organisation methods — emphasising such that relate these in
mathematical as well as technical ways: (1) Intrinsic, support technology, management &
organisation, rules & regulation, and human behaviour facets of domains; (2) projection,
instantiation, extension and initialisation of domain requirements, etc.; (3) software archi-
tectures as refinements of domain requirements, and program organisation as refinements of
machine requirements — with interface requirements (currently) being refinements of either
and both!

Acknowledgements: Among the very many people for whom DB has a special, professional
fondness, people who have helped DB in his professional career, he wishes to bear tribute,
in approximate chronological order, to (the late) Cai Kinberg, Gunnar Wedell, Jean Paul
Jacob, Gerald Weinberg, Gene Amdahl, Ed Sussenguth, Tien Chi (T.C.) Chen, Lotfi Zadeh,
(the late) Ted Codd, (the late) John W. Backus, Peter Lucas, Cliff Jones, (the late) Hans
Beki¢, Kurt Walk, Christian Gram, Ole N. Oest, Erich Neuhold, (the late) Sgren Prehn, Sir
Tony Hoare, Hans Langmaack, Zhou Chao Chen, Chris George and Kokichi Futatsugi.

1\»"3&?3&&_——.

Fredsvej 11, DK-2840 Holte, Denmark — January 21, 2010

