
Extracted form Ph. Kruchten: Software project management with OpenUP
Draft April 2007

A Conceptual Model of Software Development

A software project is temporary endeavour intended to create a new software product or
service, or the software part of a software-intensive system. It is temporary in the sense
that it has a definite beginning and a definite end, in contrast with a continuous
endeavour, such as running the IT operations of an organization. A software project has
specific and sometimes conflicting objectives and many constraints of diverse nature,
mainly technical, temporal and financial. Software project management is therefore the
art of balancing competing objectives, managing risks, and overcoming constraints to
successfully deliver a product which meets the needs of both customers and users (the
customer paying the bill not always being the end-user).

A conceptual model of software development
To explore the many facets of software project management, we will first introduce a
conceptual model of software development. This model (or ontology) of software
projects is organized around eight key concepts and their relationships:

1. Intent
2. Product
3. Work
4. People
5. Time
6. Quality
7. Risk
8. Project

Intent
The concept of Intent denotes what the project is trying to achieve. The Intent defines the
scope of the project, the intentions and hopes of the key stakeholders, the objectives.
While we think of the intent as “the requirements” or “the specification”, in practice
Intent may take many diverse forms: a set of tests that the product must pass contributes
to define Intent. A set of software problem reports that must be dealt with also indirectly
defines Intent. Various constraints, implicit or explicit, internal or external to the project
will also affect Intent. And one constant of software projects is that they are under
pressure of a stream of change requests which modify the Intent.

Product
The concept of Product denotes the outcome of the project, what has been achieved. This
is the actual software, accompanied with any other artifacts that are needed to make it a
complete product: an installer, a set of data, the user’s guide, some training material, etc.
Why aren’t Intent and Product more or less equivalent? Why do we need to distinguish
them in our model? Intent precedes Product: Intent is an abstraction, a virtuality that
sketches the reality that the project is set to achieve. Even when the product is “done”

there may be discrepancies between the Intent and the Product; the Intent may have
evolved in the meantime, or the Product has come short in some ways of the original
Intent. These discrepancies between Intent and Product are the key drivers for the project;
they are the imbalance that makes it run. Imagine the relationship between Intent and
Product as a bungee cord: the further apart and the more energy the project will expend
to bring them closer.

Work
The concept of Work denotes the activities, tasks, steps that need to be accomplished in
order to turn Intent into Product. They often come defined by a process, or a method,
which attempts to describe a systematic way to build a product; some elements of Work
are defined “on-the-fly” in an ad hoc fashion. In many cases, a Work item produces or
refines some artifact: a document, a model, an idea, a piece of code, a report, formal or
informal. Some of these artifacts are only useful internally to the project, as stepping-
stones, and do not appear in any form in the final product. They are not “deliverables”.

People
The concept of People is important in modern software project management because they
are the main “engine” behind Work elements. Software development is an intellectual
activity that is very ‘human-intensive’. Most of the work elements are done by human
beings, and only little of this work can be automated. So the availability and the
competence of the people are keys to get all the work done. Also most of the cost of
software development is associated with people. (We will often use the word Staff and
use the initial S to denote the concept of People and not clash with the P of product).

Figure 1: Four fundamental concepts in software development: Intent, Work, People and Product

Time
The concept of Time is orthogonal to our fundamental quadruple [Intent, Work, People,
Product]. Often we will use the phrase lifecycle to denote what happens with a project
over time. It is tempting to define a project linearly relative to time in 5 main steps: 1)
define completely the Intent, 2) derive from the Intent all the Work that needs to be
accomplished, 3) allocate work to People, and 4) People build the Product, 5) which
acceptance testing will show that it matches exactly the original Intent. This has been
tried again and again, but with very meager successes in software development for a
range of reasons that we will examine later on. In reality, we define Intent gradually, and
it tends to evolve throughout the project under various pressures and demands for
changes. We can therefore only define part of the Work at any point in time, and allocate

it to People, who will therefore only build part of a Product. This partial product will
influence back the Intent, through user feedback, or problem reports. It will also influence
how people will conduct the work in the future. Other chunks of Intent are then carved
out, more Work defined, and the Product will evolve until it reaches a deliverable stage.
All modern software development approaches are iterative and incremental, and they
define a project as a sequence over time:

{ [Intent1, Work1, People1, Product1],
 [Intent2, Work2, People2, Product2],
 …
 [Intentn, Workn, Peoplen, Productn] }

where Productn is the final ‘deliverable’.

Figure 2: Intent, Work, People and Product evolve over Time

Quality
The concept of Quality is also an orthogonal notion to our fundamental quadruple [Intent,
Work, People, Product]. We can see quality as an attribute of each of them. Quality of the
Intent denotes how good we are at defining and planning a Product. Quality of the work
denotes the quality of the process we use to develop software and all the intermediate
artifacts. Quality of the people denotes the competence and diligence and dedication of
the staff assigned to the project, and finally quality of the product is a measure of how
close to the expectation of the stakeholders the delivered product is. These four aspects of
quality may evolve over time, following the sequence we described above, and hopefully
their quality increases over time (inasmuch as quality is quantifiable).

Risk
Finally the concept of Risk denotes the uncertainty that is associated to each of the four
fundamental concepts at some point in time: uncertainty in the Intent, because the domain
is new, for example, uncertainty in the Work to be performed, because the process is
unclear, risks associated with the people and therefore uncertainties in the final Product.

Similarly to Quality above, these uncertainties evolve over time: the risks will be
mitigated, unknowns will become known, but new risks keep emerging.

Figure 3: Time, Quality and Risk are attributes of Intent, Work, People and Product

The project and its context
The software project, represented in our conceptual model with a tuple or composite
object [Intent, Work, People, Product], or more precisely with a sequence of such
composite objects, does not live in isolation, but it sits in a wider context, which is crucial
to understand for a software project manager.

Intent and Product are mostly facing the users and customers community, intent
driven mostly by them, and the product delivered to them. Constraints come from the
customers, and from the business environment: the company which “owns” the project.
There are also constraints coming from legal and regulatory bodies in some industries,
especially in the safety-critical domains: transportation, defense, biomedical, nuclear, and
in the financial domain.

People and Work are mostly influenced by the available technologies to develop
and deploy the software product or service: programming languages, methods,
development environment, software tools, reusable components, deployment platforms:
CPU, OS, network protocols, etc.

Figure 4: The project and its context

Intent, revisited
The Intent of the project is an image, a description, a model of what the various parties
involved want to product to be. This Intent may take several forms, depending on the
type of software project and on the method or process used. We will assume that the
Intent can be decomposed in a set of Intent elements, coming from various sources, and
carrying different names in different methods:

• Users needs: a description of the needs of the user, at least the needs that we
intend to satisfy

• Vision: a document that describes in high level terms (RUP)
• An initial product backlog (Scrum)
• A Software Requirement Specification, SRS (IEEE Standard ???)
• A list of user stories (XP)
• A feature list (FDD)
• A use-case model, with or without supplementary specifications for non

functional requirements (RUP)
• A set of acceptance test cases (TDD)
• A list of software problem reports (or bugs, or defects)
• A prototype or mock-up
• An existing product (if we are migrating or re-engineering a legacy application)

Intent

Intent
Element

n

User Need Use Case Defect Test Case

Requirement User Story Feature

Is composed of

Is a kind of

… etc.

Change
impact

n

Figure 5: Intent elements come in many different forms, and Intent constantly changes

It’s around the concept of Intent that we can introduce the subtle but pervasive concept of
change, since changes occurring along time in a project are in most cases changes in
Intent, which in turn will trigger changes in work and changes in the product. (There
maybe also changes in people, though, not related to intent: a resignation, for example.)

Work, revisited
Work is the stuff that makes traditional schedules and plans with associate with project
management: work items are found in network schedules, Gantt charts, in tools such as
Microsoft Project®, Niku® or Primavera®. Large chunk of work constitute Work
Breakdown Schedules (WBS), used for planning projects. Smaller work items are the
items that developers put on their to-do list, scribble on their white boards or their PDAs.
The bulk of process descriptions, such as RUP® or MSF®, are dedicated to the description
of work: sub-processes, activities, tasks, steps. They are the elements of focus in software
process standards such as IEEE-1074 or ISO 12207.

One of the most difficult tasks of software project management is to derive from a
given Intent the required Work. We still only know how to do this very approximately,
and there are many work items that spring out spontaneously during the course of a
project, due to unknowns, to people making errors and other various mishaps.

The amount of Work is also a key ingredient to the estimation of effort and
schedule, and therefore to the cost of the project. As we will see later, effort estimation is
another big hurdle in software development, the “black art”. Finally, project management
attempts to monitor progress while the project is on-going by comparing actual work
performed to the anticipated work.

Work

Task Activity

Work Item

n

Step

Subprocess Story Card Etc...

n

Process
Definitiondefine

Artifact

Figure 6: Work Items come in many different forms and size

Many work items ‘operate’ on some artifact, that is, they use artifacts as input and create
or update artifacts. These artifacts, their templates, and the details of the work are part of
the project’s process, and these templates can evolve over time during a project.

Product, revisited
One could claim that the delivered product is in the end the only thing which should
matter to the software project manager. What constitutes the product will vary greatly
across domains, from tiny software embedded in some device, to large distributed
systems, upgraded dynamically weekly, from shrink-wrapped software sold over the
internet to “software as a service”, from one-off “Kleenex” software rapidly assembled
out of a software junkyard to mission-critical applications maintained over 25 years. In
the simple cases, the product consists in executable code, often targeted to a specific set
of operating systems, accompanied by application data, and some supporting material:
user guides, training material, etc. Nowadays products are often expected to run on
multiple OS platforms, and several versions of these, as well as supporting different
locales: languages and work habits specific to the countries of the user.
 A notable concept associated to the product is that of a release, which is a product
made available to certain parties at given points in time during the project.

Figure 7: Elements of a Product vary across types of projects;

a Release and Reusable assets are distinguished forms of Product

It is around the concept of product that we can discuss issues such as software as an asset,
intellectual property rights, and the reuse of software assets from project to projects,
whether this software is open-source, commercial-off-the-shelf, or proprietary.

People, revisited
We’ve come to realize, through some pains, that software engineering is not primarily a
technical issue, but a people issue. Most of the real difficulties in software development,
most of the errors and shortcomings are not related to technologies but to the people
developing it, their competence, experience and availability, the communication and
coordination between these people or teams of people. Therefore the staff component,
which is very often ignored in process standards and methods, or abstracted as some kind
of vague and perfect agent, plays a major role in our conceptual model. There are several
aspects crucial to software project management: the persons themselves, i.e., the
individuals, with their knowledge and competence, the roles they play in the software
development process: analyst, developer, tester; their organizations in teams, and the
allocation of work to people or teams.

Team

Role
Competence
Availability

Person

n n

n

n

n

communicate

Figure 8: Persons, teams and roles

It’s also around our concept of people that we can discuss issues such as ethics and
professional practice.

Notation (FOR LATER USE)
On diagrams and sometimes as short-hand in the text, we will use the following notation
relative to our key concepts.

I :: Intent
P :: Product
W :: Work
S :: People (or Staff)

P(t1) = P1 :: Product at the end of the time interval t1 (e.g., “iteration #1”)
P(Tj) = Pj :: Product at the end of iteration #j
W(Tj) = Wj :: Work executed during iteration #j

Q :: Quality
R :: Risk

S·R :: staffing risk
W·Q :: work quality or process quality
Pj·Q :: product quality at the end of iteration or time-interval j

Discussion: Is this model complete? What’s missing?
We have introduced all the major ingredients that are integral to software development.
At least all that is needed to analyse and explain the activities related to software project
management. The reader may object that we are missing some: technologies and tools,
for example. Well, tools are changing rapidly, and they only come in support of various
concepts and activities of project management or software development. The ‘half life’ of
software development technologies and associated tools is about 5 years, meaning if you
draw a list of 100 such technologies today, only 50 will be in active use in 5 years, only
25 in 10 years, etc. So while it is enlightening to illustrate our concepts and explanations

with concrete tools and technologies, it is useful to stand above them, and identify the
ideas that transcend these technologies.

Discussion: Rationale for Intent
It does not make much sense to manage completely separately: requirements, defects and
enhancement requests, system level tests, change requests of all kinds, open issues, and
the associated risks, unknowns or uncertainties. They all contribute to shaping what we
are doing in the upcoming days, iterations, and to what we deliver, as well to assess the
discrepancy between the delivered product and what was expected.
Moreover recent tools (trac, rallydev?) allow combining and managing together these
elements.

	A Conceptual Model of Software Development
	A conceptual model of software development
	Intent
	Product
	Work
	People
	Time
	Quality
	Risk
	The project and its context
	Intent, revisited
	Work, revisited
	Product, revisited
	People, revisited
	Notation (FOR LATER USE)
	Discussion: Is this model complete? What’s missing?
	Discussion: Rationale for Intent

