
Where we are going!

Ivar Jacobson

The Big Picture

This talk is about the kernel and the kernel language.
It draws on my personal experience.
It suggests a goal we need to find.
It shows it can be found.
Reaching the goal, it will have dramatic impact on the whole software

community
o  the industry,
o  the developers,
o  the academics,
o  the education,
o  the methodologists, etc.

 Watts Humphrey:
 “This meeting in Zurich is likely to be an historic occasion
much like the 1968 NATO session in Garmish.”

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

What went well and what went wrong

“Good”
•  Many proven practices

–  Use-cases (incl test)
–  Iterations
–  Components
–  Architecture
–  Etc.

•  Supported UML
–  UML replaced all the hundred

modeling languages at the time

“Bad”
•  A soup of practices
•  Too big

–  People don’t read process books

•  Hard to extend with agile,
CMMI, etc.

•  Adoption extremely hard
–  Process savvy
–  Revolutionary

•  Gap between what people
said they did and what they
really did – The Process Gap

Let’s be clear, the “rise and fall” are all about perception

The perceived “rise and fall” of RUP

On Processes (or Methods and Methodologies)

•  Every process tries to be complete
–  As a consequence every successful process will grow until it dies under

its own weight
•  Every branded process is just a soup of ideas ”borrowed” from other

processes
–  With some new idea(s)

•  Every process usually becomes just shelf-ware
–  Law of Nature: People don’t read process books

•  The process is out of sync with what the team does…
–  …and the project – process gap get wider and wider

•  The project has to adopt an entire process
–  No-one uses an entire process or limits themselves to practices from

one process

Some exaggeration <grin>

No wonder people don’t like process

We looked for fundamental changes.

Fixing what was “Bad”
•  Make practices first class

citizens, and process a
composition of practices

•  Focus on the essentials
instead of trying to be
complete

•  Extensions through practices
•  A new user experience with

focus on developers, not on
process engineers.

•  Enact the process

“Bad”
•  A soup of practices
•  Too big

–  People don’t read process books

•  Hard to extend with agile,
CMMI, etc.

•  Adoption extremely hard
–  Process savvy
–  Revolutionary, not evolutionary

•  Gap between what people
said they did and what they
really did – The Process Gap

We redesigned RUP as EssUP

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Practices

From the successes
in modern software

development

Agile
Methods

Camp

The Software
Engineering

Camp

Process
Maturity

Camp

In the future, an ever present but
invisible process

We need a new
paradigm

Process becomes second
nature

The team’s way-of-working is
just a composition of

Practices

Practice is a First Class Citizen
the unit of adoption, planning and execution of process

Unified Process Examples: CMMI, Spice XP, Scrum

The Paradigm Shift: From ‘Processes’ to ‘Practices’
We have always had practices in a loose meaning

  After the paradigm shift you can do all kinds of operations on practices

o Separate them, compose them, teach them, execute them

Class-like
elements

Before

Process

Practice

Process is First
Class Citizen

Practices were non-
tangible elements

They were there
but not separable
from one another

Now

Process is just a
composition of
practices

Practices are First
Class Citizens

We needed a shared definition of “practice”

Pragmatics
•  A practice provides a way to systematically address a particular aspect

of a process. It is a separate concern of the process.
•  There are three kinds of practices (at the least):

–  Peer practices
•  A practice has a clear beginning and an end allowing it to be

separately applied, examples:
–  Iterative development
–  Use-case driven development
–  Project management à la Scrum

–  Extension practices
•  Use cases for SOA

–  Cross-cutting practices
•  Team practice incl workshops, self-organizing teams, war room,

pair programming, etc.
•  Process improvement for the essentials of CMMI – e.g. metrics.

A Good Practice is good for the team

•  Gives a result of observable value to the customer of the team
–  It is a building block for the team – not necessarily for the process engineers.

•  Not too big – not too small
–  It includes its own verification
–  It is that thing that needs to be made lean
–  It is that thing for which you want to have metrics

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Focus on the Essentials

What is Essential?
•  It is the key things to do and the key things to produce
•  It is about what is important about these things
•  It is less than a few percent of what experts know about these things

–  Law of nature: People don’t read process books
•  It is the placeholders for conversations

–  Law of nature: People figure out the rest themselves
–  Training helps

•  It is the base for extensions

Starting with the essentials makes a practice
adoptable.

How much do you need in your hands?

Referen
ce

books

Why Cards?

•  Cards are tactile
•  Cards are simple and visual
•  Cards use conversational and

personalized style
•  Cards are not prescriptive so they get

the learner to think more deeply
•  Cards get…and keep…the readers

attention
•  Cards promote agility
•  They can be written on to make minor

adjustments to the practice on the fly

•  A practice is a set of cards •  A team works on a set of instance cards

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Practices are enacted

Set Up
Your Goals

Things to produce

Get Help
To Reach
Your Goals

Things to do

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Thus we fixed what didn’t work

Great, but now more became evident!

Technical
Practices

Cross-
Cutting
Practices

Use Case

Process Modeling

Product Architecture

$

Component Iteration

Team

up up
Unified Process

Lifecycle

Essential Unified Process Fixing what was “Bad”
•  Make practices first

class citizens
•  Focus on the

essentials
•  Extensions through

practices
•  A new user

experience with
focus on developers

•  Enact the process
to close the gap

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Hypothesis harvested from the fixing-the-problem work

•  All methods comprise of a set of things that are always there -
documented or not.

•  We called this set the Kernel.
•  Every method can then be described as a set of composed

practices using the kernel.

There is a kernel!
Many different methods can be built out of

this same kernel.

To verify the hypothesis we started all over

•  We called our initiative EssWork (moving beyond EssUP)
•  The Kernel we harvested is very small, extracted from a large number

of methods
•  It contains empty slots for things that every process have

–  Slots for
•  Competencies, such as analyst, developer, tester
•  Things to work with, such as backlog, implementation, executable

system
•  Things to do, such as implement the system, test the system

•  The Kernel is practice and of course method agnostic.

Kernel

The Kernel includes a Meta-Model - an implied language

pr
og

re
ss

es
 >

Alpha

Activity Space

<
in

vo
lv

es

Competency

Work Product

Pattern Space

Pattern

Activity

organizes >

or
ga

ni
ze

s
>

< supports
organizes >

< describes

pr
od

uc
es

 >

< supports

The EssWork Kernel
•  contains empty slots for things that every process have

Kernel

Opportunity

Project

Requirements System

Way of Working Team

Understand the
Need

Ensure Stakeholder
Satisfaction

Accept the
System

Specify the
System

Shape the
System

Implement
Software

Test the
System

Release the
System

Establish Project Steer Project Support Team Conclude Project

Developer

Leadership

Customer
Representative

Analyst Tester

Things to Work with Things to Do

Patterns To Apply Competencies

25 Practice Development with
EssWork / 02 - The Process Kernel

Practices put the meat (Betas) on the bones (Alphas)

Specified
System

Use-Case
Model

User Stories

Product
Requirements

Document

Software
Requirements

Document

For example there are many ways to specify the system.

Specified
System

Specified
System

Comparing Alphas and Work Products

Alphas:
•  The most important things that all

software projects have whether they
exist

•  Intangible
•  The things whose progress we want

to understand, monitor, direct and
control

•  Alphas have progress states
•  State progression means

progression towards release

Work products:
•  Used to record information

about alphas
•  Used to understand and assess

the alphas
•  Can be physical documents,

electronic files, models,
databases, .xml

•  State progression generally
represents more information or
detail

Things to Work with: Alphas and Work Products

These are the alphas:

Alpha Relationships

$

Opportunity

Requirements

Team

System

Project

Way of
Working

can be pursued by
developing a solution
that fulfills the

addressed by
producing a

helps to pursue
the

undertakes the

follows the applies the

produced and tested
by the

delivers working

focuses on
pursuing the
real

scope and
constrain the

Alpha States

Competency Levels

Using the kernel

Practice
Each practice contains practice-
specifics to add to the kernel.

The kernel defines
an “empty process”

Kernel

Practices “slot” into the
common kernel.

Way of

Working

Change starts by harvesting your best practices from your own method

Kernel
Your Own

Best Practices

+

Improve your method by adding other, proven practices

Your Own

Best Practices

Kernel

+ +
Other Practices

From Many Sources

Iterative

Component

Architecture

Use Case

Team

+++
PLA

OK, there is a kernel!
Maybe there are many?

But none is widely-accepted!
That needs to be changed!

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

CASE FOR ACTION 2nd part

•  We support a process to refound software engineering based on a
solid theory, proven principles and best practices that:
–  Include a kernel of widely-agreed elements, extensible for specific uses
–  Addresses both technology and people issues
–  Are supported by industry, academia, researchers and users
–  Support extension in the face of changing requirements and technology

The Kernel ≈ The Kernel Language + The Universals

The Envisioned Kernel

Methods

Practices Patterns

Universals

Composed of

Defined in
terms of

The kernel 1

2

3
Level

Kernel language

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

A recipe for success

Our work needs to be
•  driven from the demands of the industry/developer community, and
•  enabled and formulated by the research community, and
•  popularized by the methodologists.

Industry/
Developers

Methodologists

Academics

We need a theoretical basis that is widely shared and supported,
one that crosses the boundaries between the different software
development camps.

This is
smart!

Some challenges addressed by SEMAT

Industry
Big companies have
many processes.
Challenges:
- Reuse practices
- Reuse training
- “Reuse” of people
- Evolutionary
improvement is hard

Developers
Want to become
experts. Challenges:
- Their skills are not
easily transferable to a
new product.
- Their career path
follows a zig-zag track
from hype to hype.

Methodologists
Every method is a soup of
practices. Challenges:
- Have to reinvent the
wheel

Academics
Asked to educate and
research. Challenges:
- The Gap between
research and industry
- No widely accepted
theory
- Teaching instances of
methods doesn’t create
generalists

SEMAT can have significant impact on the
software community.

Agenda

•  On what went well and what went wrong
•  Addressing what went wrong

1.  Practices
2.  A new user experience
3.  Practices are not dead, they are enacted
4.  Result

•  There must be a kernel
•  The Semat kernel: track 3 and 4
•  If successful what impact can we expect?
•  Wrap up

Final Words

This is
smart!

ivar@ivarjacobson.com

The Universals

Kernel properties
•  Concise.
•  Scalable.
•  Extensible.
•  Measurable.
•  Formally specified.
•  Broad practice coverage.
•  Broad lifecycle coverage.
•  Broad technology coverage.

The Universals

Criteria for inclusion
•  Universal
•  Significant
•  Relevant
•  Defined precisely
•  Actionable
•  Assessable
•  Comprehensive.

•  Let's now start to talk about the Universals which belongs to
track 3:Which are the universal alphas?The very root has n
top alphas. In our case (EssWork) they are:- Opportunity,
(which is an intangible but onto which we can attach a
business case work product, a budget, and lots of other
stuff)- Requirement (which are what you call Intent which I
like). Here you can attach reqt spec, use case model, but all
these are practice specific- System. Here you can attach
design model, use case realizations, code, deployment
model, ...all are practice specific- Project. There is always a
project. Here you can attach project plan, iteration plan,
backlog...practice specific stuff- Team. There is always a
team. Here you can have sub-alphas such as team members
etc.- Way of working. Another word for method/process,
whatever. Here you can attach descriptions describing your
way of working. In EssWork this is done by attaching a
number of practice descriptions.All these are top alphas.
Sub-alphas are always practice-specific. For instance, if you

•  Some questions I have got:What is Guidance? I think it is a work
product attached to the alpha Way-of-working?Tool. We probably
need a new language construct ToolHuman operator. We have
an alpha called Team and it has sub-alphas Team_member. If
this is not enough we may have to add a new language construct
Worker.Automatic operator. Could be Worker with the attribute
Automatic.Language. Is this a new language construct, or a Tool?
Program. This is a work product attached to the System alpha or
to sub-alphas of the System alpha.

The Kernel Language

•  The kernel language contains constructs that we need to
define in track 4, such as :- Method/methodology/process or
as I prefer to call them: Way-of-working- Practice - Pattern
and KindofPattern- Alpha and sub-alpha- Work product-
Competency- Activity and KindofActivity

