
96	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Sounding Board

continued on p. 94

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

Where’s the Theory
for Software Engineering?
Pontus Johnson, Mathias Ekstedt, and Ivar Jacobson

Most academic disciplines are very
concerned with their theories. Standard text-
books in subjects ranging from optics to cir-
cuit theory to psychology to organizational
theory to international relations either pres-
ent one single theory as the subject’s core or
discuss a limited set of alternative theories
to explain the discipline’s essence to its stu-
dents. A prime example is the central role of
Maxwell’s equations in the subject of electri-
cal engineering. It’s difficult to fathom what
electrical engineering would be today with-
out those four concise equations. A quite
different example is the contested Domino
theory, which heavily influenced American
foreign policy in the 1950s to 1980s by spec-
ulating that one nation’s embrace of com-
munism would entail the conversion of sur-
rounding countries in a domino effect. Even
though electrical engineering and political
science are different in almost all respects,
they’re both highly interested and invested in
their theories.

What Is Software
Engineering Theory?
Software engineering, however, isn’t overly
concerned with its core theory. If asked, the
community surely couldn’t give a coherent
answer about which is the most important
one. Candidates might include theories with
significant scope, such as formal systems
theory, decision theory, organization the-
ory, or theory of cognition. Collections of
propositions might also be suggested, such
as Alan Davis’s 201 Principles of Software
Development (McGraw-Hill, 1995), Fred-
erick P. Brooks’s propositions in The Mythi-

cal Man-Month (Addison-Wesley, 1975),
or SWEBOK (A. Abran et al., eds., IEEE,
2004). Specialized models such as Cocomo
might also be candidates. We suspect that
you’ll disagree with most of these proposals,
but that just proves our point about the lack
of consensus. Still, why are so many other
fields explicit with their theories while soft-
ware engineering is not?

Before discussing this question, we need
to—in impossibly few words—describe
what we mean by that multifaceted word
“theory.” A good definition comes from a
thoughtful article published in Management
Information Systems Quarterly (S. Gregor,
“The Nature of Theory in Information Sys-
tems,” vol. 30, no. 3, 2006). According to
author Shirley Gregor, there are many defi-
nitions for the term, but most theories share
three characteristics: they attempt to gener-
alize local observations and data into more
abstract and universal knowledge; they typ-
ically represent causality (cause and effect);
and they typically aim to explain or predict
a phenomenon. Considering the purpose
of theory, Gregor proposes four goals. The
first is to simply describe the studied phe-
nomenon; SWEBOK could serve as an ex-
ample. The second goal is to explain the
how, why, and when of the topic; theory of
cognition, for example, is aimed at explain-
ing the workings of the human mind. The
third goal is to not only explain what has
already happened but also to predict what
will happen next; in software engineering,
Cocomo attempts to predict the cost of

94	 IEEE Software | www.computer.org/software

Sounding Board

software projects. The fourth goal of
theory according to Gregor is to pre-
scribe how to act based on predic-
tions; Davis’s 201 principles exemplify
prescriptions.

Three Arguments
Returning to the main question—why
the software engineering community
seems so uninterested in discussing its
theories—we can imagine three argu-
ments: software engineering doesn’t
need theory, software engineering al-
ready has all the theory it needs, and
software engineering can’t have any
significant, defining theories. We don’t
believe that these arguments are valid,
but let’s consider them individually.

Software Engineering
Doesn’t Need Theory
Software engineering is doing fine
without explicit theories, so why
change a winning formula? First, soft-
ware engineering isn’t doing fine. Re-
ports about failed IT projects have

been published on a regular basis for
decades now. Second, all engineering
fields need theory. To build something
good, you must understand the how,
why, and when of building materials
and structures. Indeed, you have to
predict in the design stage the qualities
of the end product if you want to avoid
the painstaking labor of trial and error.
In the words of Kurt Lewin, “There
is nothing so practical as a good the-
ory” (Field Theory in Social Science,

Harper & Row, 1951). Third, for the
many software engineering research-
ers employed at universities around the
world, a researcher without a theory is
like a gardener without a garden. Ac-
cording to philosopher Thomas Kuhn,
the maturity of scientific disciplines can
be measured by the unity of their theo-
ries (The Structure of Scientific Revo-
lutions, Univ. of Chicago Press, 1962).
In the most established disciplines en-
gaged in what Kuhn calls normal sci-
ence, a paradigmatic theory defines a
whole field (for example, Maxwell’s
equations, Einstein’s theory of rela-
tivity, and Darwin’s theory of natu-
ral selection). In a less mature phase,
called pre-paradigm, a small number
of theories, typically with ambitious
explanatory scopes, compete for aca-
demic hegemony. This is the case in
psychology, where cognitive theories
challenge psychodynamic theories, and
in international relations, where realist
and liberalist theories battle for domi-
nance. Kuhn doesn’t offer a name for
the phase before the pre-paradigm, in
which there exists a large number of

unrelated theories, because he consid-
ers this something less than science.

Software Engineering
Already Has Its Theory
A discipline’s significant theories
should be able to provide answers to
that discipline’s significant questions.
Considering software engineering, one
of the most hotly debated questions
concerns the choice of software devel-
opment method. Although there are

many opinions on the subject, we can
name very few theories that attempt to
answer the question. And to the extent
that such theories exist, they aren’t,
as in other disciplines, given names,
presented in textbooks, or debated at
conferences. The same goes for other
significant questions of software engi-
neering, such as which programming
language to use, how to specify sys-
tem requirements, and so on. Note that
many proposed software development
methods, programming languages, and
requirements specification languages
exist, but very few explicit theories ex-
plain why or predict that one method
or language would be preferable to an-
other under given conditions.

Software Engineering
Can’t Have a Theory
Software engineering is a practical en-
gineering discipline without scientific
ambitions where rules of thumb and
guidelines assume the role of theory.
We can counter this argument by re
iterating the tight connection between
engineering and science. A typical defi-
nition of engineering is the one found
in Encyclopedia Britannica: “the appli-
cation of science to … the uses of hu-
mankind.” Thus, there’s no engineer-
ing without science. Second, it isn’t true
that there is no theory in the software
engineering community. In a sense,
theory is abundant. To the previously
mentioned propositions, we could add
Kent Beck’s suggestion that the change
cost curve could be logarithmic rather
than exponential (Extreme Program-
ming Explained, Addison-Wesley,
1999), David Parnas’s principle of in-
formation hiding (“On the Criteria to
Be Used in Decomposing Systems Into
Modules,” Comm. ACM, 1972), Con-
way’s law, Edsger Dijkstra’s theory of
cognitive limits as presented in the clas-
sical article “Go To Statement Consid-
ered Harmful” (Comm. ACM, 1968),
stepwise refinement, and so on. But all
of these theories are small and most

continued from p. 96

To build something good, you must
understand the how, why, and when
of building materials and structures.

	 September/October 2012 | IEEE Software � 95

Sounding Board

are casual, proposed by the authors
but rarely subjected to extended stud-
ies, and they explain only a limited set
of phenomena. Furthermore, most of
these theories aren’t subject to serious
academic discussion; they aren’t evalu-
ated or compared with respect to tra-
ditional criteria of theoretical quality
such as consistency, correctness, com-
prehensiveness, and precision.

A s should be evident by now,
we don’t believe that there’s
any rational reason for the

lack of theoretical interest in software
engineering. It’s surely historical; born
in the hurly burly of software practice,
explanation and prediction were often
merely glanced at through the car win-
dow in the race between problem and
solution. Today, however, tens of thou-
sands of software engineering research-
ers are employed in the universities of
the world, spending innumerable man-
hours on software engineering research,
but theory is still on the sidelines. To
our knowledge, very few explicit at-
tempts propose general theories of soft-
ware engineering. Interesting avenues
to watch on that front seem to be the
Semat initiative (www.semat.org) and
GUTSE (Grand Unified Theory of Soft-
ware Engineering; http://books.google.
com/books?id=TLcceL3NEiMC).

And make no mistake, theory is
important. Without the predictive
and prescriptive support of theory,
software engineering would be rel-
egated to the horribly costly design
process of trial and error. With the-
ory, we rise from the drudgery of ran-
dom action into the sphere of inten-
tional design. Software engineering
is already full of implicit theory. We
just need to bring it out into the open
and subject it to the serious scientific
treatment it deserves.

Pontus Johnson is a professor at KTH Royal
Institute of Technology in Stockholm, Sweden.
Contact him at pontusj@ics.kth.se.

Mathias Ekstedt is an associate professor
at KTH Royal Institute of Technology in Stockholm,
Sweden. Contact him at mathias.ekstedt@ics.kth.se.

Ivar Jacobson is an international honorary
advisor at Peking University, Beijing, and he holds
an honorary doctorate degree from San Martin de
Porres University, Peru. He is most well known for
his seminal contributions to the domain of software
engineering, including use cases, UML, and now
as a founder of Semat. Contact him at ivar@
ivarjacobson.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer So-
ciety. IEEE headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997.
IEEE Computer Society Publications Office: 10662 Los Vaqueros Cir., Los Alamitos,
CA 90720-1314; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer Society
headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates: IEEE
Computer Society members get the lowest rate of US$56 per year, which includes
printed issues plus online access to all issues published since 1984. Go to www.com-
puter.org/subscribe to order and for more information on other subscription prices.
Back issues: $20 for members, $193 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Mem-
bership Processing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854-4141. Periodicals Postage Paid at New York, NY, and at additional mail-
ing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement
Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Ni-
agara Falls, ON L2E 6S8, Canada. Printed in the USA.
Reuse Rights and Reprint Permissions: Educational or personal use of this ma-
terial is permitted without fee, provided such use: 1) is not made for profit; 2)
includes this notice and a full citation to the original work on the first page of the

copy; and 3) does not imply IEEE endorsement of any third-party products or ser-
vices. Authors and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permission, provided
that the IEEE copyright notice and a full citation to the original work appear on
the first screen of the posted copy. An accepted manuscript is a version which has
been revised by the author to incorporate review suggestions, but not the pub-
lished version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/republish this
material for commercial, advertising, or promotional purposes or for creating
new collective works for resale or redistribution must be obtained from IEEE by
writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscat-
away, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2012 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Li-
braries are permitted to photocopy for private use of patrons, provided the per-copy
fee indicated in the code at the bottom of the first page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Advertiser PAge
NuInfo Systems, Inc. 10

Advertising Personnel
Marian Anderson, Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139; Fax: +1 714 821 4010

Sandy Brown, Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144; Fax: +1 714 821 4010

Advertising Sales Representatives
(display)
Central, Northwest, Far East: Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@
computer.org

Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California: Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast: Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales
Representative (Classified Line)
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales
Representative (Jobs Board)
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

AdvertiSer informAtion • September/october 2012

