
Shihong Huang
Department of Computer Science & Engineering

Florida Atlantic University

1st SEMAT Workshop
March 17 - 19, 2010 Zurich

March 17-19, 2010 Zurich SEMAT Workshop 2010 2

Florida Atlantic
 University

March 17-19, 2010 Zurich SEMAT Workshop 2010 3

March 17-19, 2010 Zurich SEMAT Workshop 2010 4

  Refound software engineering based on a solid
theory, proven principles and best practices

  Address some of the prevalent problems
  Prevalence of fad
  Lack of a sound, widely accepted theories
  Large number of methods and variants
  Need of credible empirical evaluation and validation
  Gap between industry and academia

March 17-19, 2010 Zurich SEMAT Workshop 2010 5

  Defining the basic definition of software
engineering

  Providing a strong mathematical basis
  Identifying the truly universal elements
  Defining a kernel language that describes the

“method elements” -- practices, patterns, and
methods

  Providing assessment techniques evaluating
software practice and theories

March 17-19, 2010 Zurich SEMAT Workshop 2010 6

  The goal of the Universal
  Identifying the universal elements of software engineering

to be integrated into “kernel”
  In the meantime, “keep the kernel concrete, focused and

small”
  Universals and Definitions are mutually tightly

coupled
  Definition defines the scope of the Universals
  Universals codify Definition

  Basic understanding of what “software engineering” is
  What the uniqueness of software engineering

March 17-19, 2010 Zurich SEMAT Workshop 2010 7

  We leave this question to Track 1 to answer
  Software Engineering = “Software” +

“Engineering”
  “The application of engineering methods and

discipline to the field of software”
  Although some question its sufficiency or

precision [A. Cockburn]
  Software engineering is indeed an

“Engineering” discipline, it should be treated
the “engineering way”

March 17-19, 2010 Zurich SEMAT Workshop 2010 8

  Science seeks to understand what is, whereas
  Engineering seeks to create what never was
 --- [Henry Petroski 2010]
  It is not appropriate to describe engineering as

mere applied science
  Some extra-scientific components to

engineering:
  Creative nature
  Situated culture particularity to a specific

application domain

March 17-19, 2010 Zurich SEMAT Workshop 2010 9

  When defining “software engineering” and the
“Universals”

  It is essential to keep in mind the similarities and
differences between science and engineering

  Science
  Deals with the universal laws
  Context and time independent and true everywhere

  In engineering
  Analysis follows synthesis and observation

  Engineering
  Situated culture
  Needs to have constant learning, refinement and adaptation

to meet the environmental requirements

March 17-19, 2010 Zurich SEMAT Workshop 2010 10

In engineering

Analysis follows synthesis and observation
 Not the other way around

March 17-19, 2010 Zurich SEMAT Workshop 2010 11

  While software engineering follows the
engineering fundamentals

Some unique features of
software engineering and software products
vs.
General engineering and engineering products

March 17-19, 2010 Zurich SEMAT Workshop 2010 12

  Full specification

  Design
  Manufacture
  Test
  Install
  maintain

  Incomplete specification

  First three stages are often
blurred

  Final product is intangible
  Doesn’t wear out

March 17-19, 2010 Zurich SEMAT Workshop 2010 13

  Evolution is more important in software than in
other engineering disciplines

  Software engineering rarely involves “green
field” development

  Software needs to be constantly maintained
and evolved to meet new business requirements

  The cost incurred in evolution usually exceed
the development cost by a factor of 3 or 4

March 17-19, 2010 Zurich SEMAT Workshop 2010 14

  Given the malleable nature of software, a good
collection of Universals should
  Include general engineering universals that capture

the core practices of engineering disciplines
  Unique features of software

  From general to specific
  Approach should be continuum and continuum

should be respected
  Not everything must be universal or that

everything must be situation specific

March 17-19, 2010 Zurich SEMAT Workshop 2010 15

  Layer 1: the “engineering” aspect

Best practices of engineering
discipline applicable to software:

Project:
•  Transformation
•  Flow
•  Value generation

Management
•  Planning
•  Execution
•  Controlling

March 17-19, 2010 Zurich SEMAT Workshop 2010 16

  Layer 2: the “software” aspect

Unique practices to software:

•  Extensibility
•  Interoperability
•  Evolveability
•  Reusability
•  Maintainability

March 17-19, 2010 Zurich SEMAT Workshop 2010 17

  Layer3: “variability” -- situated culture

Reflect and address the knowledge
of different more situated
application domain

•  Real-time systems
•  Self-adaptive systems
•  Self-management systems
•  Web systems
•  … more

March 17-19, 2010 Zurich SEMAT Workshop 2010 18

  Poorly perceived: “anyone can teach it”

  Scarcely founded (e.g., Federal and States)

  Challenging Quality publications

March 17-19, 2010 Zurich SEMAT Workshop 2010 19

Moving
Targets

March 17-19, 2010 Zurich SEMAT Workshop 2010 20

  Software Engineering Method and Theory (SEMAT) online at
www.semat.org

  SEMAT Vision Statement online at http://www.semat.org/pub/Main/
WebHome/SEMAT-vision.pdf

  A. Cockburn. The end of software engineering and the start of economic
gaming. http://alistair.cockburn.us/The+end+of+software+engineering
+and+the+start+of+economic-cooperative+gaming).

  I. Jacobson, P. W. Ng, I. Spence “Enough of Processes - Lets do Practices”
Journal of Object Technology, Vol. 6, No. 6, July -August 2007

  Henry Petroski The Essential Engineer: Why Science Alone Will Not Solve
Our Global Problems, Knopf, February 23, 2010

  L. Koskela, Lauri and G. Howell. The underlying theory of project
management is obsolete.

  http://www.leanconstruction.org/pdf/ObsoleteTheory.pdf
  H. Müller, J. Jahnke, D. Smith, M-A. Storey, S. Tilley, and K. Wong.

“Reverse engineering a roadmap.” International Conference on Software
Engineering Proceedings of the Conference on The Future of Software
Engineering (ICSE 2000: Limerick, Ireland). pp. 47-60.

  I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison Wesley Professional June 1,
1997.

