
Shihong Huang
Department of Computer Science & Engineering

Florida Atlantic University

1st SEMAT Workshop
March 17 - 19, 2010 Zurich

March 17-19, 2010 Zurich SEMAT Workshop 2010 2

Florida Atlantic
 University

March 17-19, 2010 Zurich SEMAT Workshop 2010 3

March 17-19, 2010 Zurich SEMAT Workshop 2010 4

  Refound software engineering based on a solid
theory, proven principles and best practices

  Address some of the prevalent problems
  Prevalence of fad
  Lack of a sound, widely accepted theories
  Large number of methods and variants
  Need of credible empirical evaluation and validation
  Gap between industry and academia

March 17-19, 2010 Zurich SEMAT Workshop 2010 5

  Defining the basic definition of software
engineering

  Providing a strong mathematical basis
  Identifying the truly universal elements
  Defining a kernel language that describes the

“method elements” -- practices, patterns, and
methods

  Providing assessment techniques evaluating
software practice and theories

March 17-19, 2010 Zurich SEMAT Workshop 2010 6

  The goal of the Universal
  Identifying the universal elements of software engineering

to be integrated into “kernel”
  In the meantime, “keep the kernel concrete, focused and

small”
  Universals and Definitions are mutually tightly

coupled
  Definition defines the scope of the Universals
  Universals codify Definition

  Basic understanding of what “software engineering” is
  What the uniqueness of software engineering

March 17-19, 2010 Zurich SEMAT Workshop 2010 7

  We leave this question to Track 1 to answer
  Software Engineering = “Software” +

“Engineering”
  “The application of engineering methods and

discipline to the field of software”
  Although some question its sufficiency or

precision [A. Cockburn]
  Software engineering is indeed an

“Engineering” discipline, it should be treated
the “engineering way”

March 17-19, 2010 Zurich SEMAT Workshop 2010 8

  Science seeks to understand what is, whereas
  Engineering seeks to create what never was
 --- [Henry Petroski 2010]
  It is not appropriate to describe engineering as

mere applied science
  Some extra-scientific components to

engineering:
  Creative nature
  Situated culture particularity to a specific

application domain

March 17-19, 2010 Zurich SEMAT Workshop 2010 9

  When defining “software engineering” and the
“Universals”

  It is essential to keep in mind the similarities and
differences between science and engineering

  Science
  Deals with the universal laws
  Context and time independent and true everywhere

  In engineering
  Analysis follows synthesis and observation

  Engineering
  Situated culture
  Needs to have constant learning, refinement and adaptation

to meet the environmental requirements

March 17-19, 2010 Zurich SEMAT Workshop 2010 10

In engineering

Analysis follows synthesis and observation
 Not the other way around

March 17-19, 2010 Zurich SEMAT Workshop 2010 11

  While software engineering follows the
engineering fundamentals

Some unique features of
software engineering and software products
vs.
General engineering and engineering products

March 17-19, 2010 Zurich SEMAT Workshop 2010 12

  Full specification

  Design
  Manufacture
  Test
  Install
  maintain

  Incomplete specification

  First three stages are often
blurred

  Final product is intangible
  Doesn’t wear out

March 17-19, 2010 Zurich SEMAT Workshop 2010 13

  Evolution is more important in software than in
other engineering disciplines

  Software engineering rarely involves “green
field” development

  Software needs to be constantly maintained
and evolved to meet new business requirements

  The cost incurred in evolution usually exceed
the development cost by a factor of 3 or 4

March 17-19, 2010 Zurich SEMAT Workshop 2010 14

  Given the malleable nature of software, a good
collection of Universals should
  Include general engineering universals that capture

the core practices of engineering disciplines
  Unique features of software

  From general to specific
  Approach should be continuum and continuum

should be respected
  Not everything must be universal or that

everything must be situation specific

March 17-19, 2010 Zurich SEMAT Workshop 2010 15

  Layer 1: the “engineering” aspect

Best practices of engineering
discipline applicable to software:

Project:
•  Transformation
•  Flow
•  Value generation

Management
•  Planning
•  Execution
•  Controlling

March 17-19, 2010 Zurich SEMAT Workshop 2010 16

  Layer 2: the “software” aspect

Unique practices to software:

•  Extensibility
•  Interoperability
•  Evolveability
•  Reusability
•  Maintainability

March 17-19, 2010 Zurich SEMAT Workshop 2010 17

  Layer3: “variability” -- situated culture

Reflect and address the knowledge
of different more situated
application domain

•  Real-time systems
•  Self-adaptive systems
•  Self-management systems
•  Web systems
•  … more

March 17-19, 2010 Zurich SEMAT Workshop 2010 18

  Poorly perceived: “anyone can teach it”

  Scarcely founded (e.g., Federal and States)

  Challenging Quality publications

March 17-19, 2010 Zurich SEMAT Workshop 2010 19

Moving
Targets

March 17-19, 2010 Zurich SEMAT Workshop 2010 20

  Software Engineering Method and Theory (SEMAT) online at
www.semat.org

  SEMAT Vision Statement online at http://www.semat.org/pub/Main/
WebHome/SEMAT-vision.pdf

  A. Cockburn. The end of software engineering and the start of economic
gaming. http://alistair.cockburn.us/The+end+of+software+engineering
+and+the+start+of+economic-cooperative+gaming).

  I. Jacobson, P. W. Ng, I. Spence “Enough of Processes - Lets do Practices”
Journal of Object Technology, Vol. 6, No. 6, July -August 2007

  Henry Petroski The Essential Engineer: Why Science Alone Will Not Solve
Our Global Problems, Knopf, February 23, 2010

  L. Koskela, Lauri and G. Howell. The underlying theory of project
management is obsolete.

  http://www.leanconstruction.org/pdf/ObsoleteTheory.pdf
  H. Müller, J. Jahnke, D. Smith, M-A. Storey, S. Tilley, and K. Wong.

“Reverse engineering a roadmap.” International Conference on Software
Engineering Proceedings of the Conference on The Future of Software
Engineering (ICSE 2000: Limerick, Ireland). pp. 47-60.

  I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison Wesley Professional June 1,
1997.

