
SEMAT, March 2010
Software, Engineering, Artefacts,

Language

Observations

Software

Coding can be viewed as having to
deal with someone else’s
representation (program notation or
otherwise).

Software

Modelling can be viewed as working
with a direct representation of the
purpose that humans associate with a
system.

Engineering?

Stuff

➡ Terminology

➡ Data structures

➡ Information

➡ Knowledge

➡ Solutions / products

➡ Monetised value

Engineering?

If software is information (models and
code), then subject matter experts in
various disciplines produce the vast
majority of software, and software
developers only produce a small
fraction of software.

• Distinguishing between “us” (software developers) and
“them” (software users) is counter-productive. We are all
“computer users”, and all of us consume and produce
information (software).

Language

The artefacts that subject matter
experts produce when not shackled to
a software engineering “methodology”
tend to be neither specifications in a
general purpose programming
language nor do they tend to be long-
winded stories expressed in natural
language.

Artefacts

To date software producers have
neglected the role of artefacts as
natural units of work, and as a
mechanism for defining the
boundaries of areas of knowledge.

Proposed Definitions

Software

Coding happens when we work with
third party implementation
technologies (hardware or software)
and when mapping to such
technologies.

Software

Modelling happens when we capture
knowledge in a domain specific
notation that is grounded in
established domain terminology.

Software

Software consists of
all the models and
code used within a
computer and in the
interactions between
computers and
humans

Engineering?

Engineering happens when we
combine theories and empirically
tested techniques to automate coding.

???

Artefacts

An artefact is a container of information
that
• is created by a specific actor (human or a system)

• is consumed by at least one actor (human or system)

• represents a natural unit of work (for the creating and
consuming actors)

• may contain links to other artefacts

• has a state and a lifecycle

Artefacts

A software artefact is an artefact that
meets the following requirements:
• It is created with the help of a software program that enforces

specific instantiation semantics

• The information contained in a software artefact can be easily
processed by software programs

• Referential integrity between software artefacts is preserved at
all times with the help of a software program

• No circular links between software artefacts are allowed at any
time

• The lifecycle of a software artefact is described in a state
machine

• The events consumed and produced by the artefact state
machine are available for processing in software programs

Language

Software artefact design is the
emerging discipline of recording
useful domain specific jargon and
nudging the jargon into a shape where
ambiguities are resolved, and where
the artefacts articulated in the jargon
meet the proposed definition of a
software artefact.

Proposed Goals

Software

Software production techniques
should promote modelling, and should
aim to minimise the amount of code
that humans are directly exposed to.

Engineering?

All software changes should be as low-
risk as a database transaction.

• Program specification changes are simply very-long-running
transactions, and their duration is artificially inflated by the
arcane mechanisms that we currently use to perform such
transactions.

Artefacts

Fundamental practices and patterns
for software production must directly
relate to the production of software
artefacts.

Language

Software producers need to agree on

• a practical notation for decorating any software
artefact with instantiation semantics, such that
the result is a template for software artefacts
produced by down-stream roles in the value
chain.

• a software program that acts as the reference
implementation for software artefact
instantiation semantics.

Thank you
Jorn Bettin

jbe @ sofismo . ch

