SEMAT Position Paper

Tom Gilb
http://www.semat.org/bin/view

http://homepage.mac.com/tomgilb/filechute/Gilb
%20SEMAT%20Position%2031Jan2010.pdf

http://www.semat.org/bin/view/Main/WorkshopPositions

Mittwoch, 29. April 2015 © Tom@Gilb.com



SOME BASIC CONCEPTS *

A software engineer is an engineer with specialty in software.
Software engineering is the discipline of making software systems deliver the required value to all stakeholders.

* Engineering is
— an Evolutionary Process,
— using practical Principles,

— in order to determine, and identify the Means to
deliver,

— the best achievable Performance and Cost levels
balance,

— for optimal Stakeholder satisfaction,
— in a complex risk-filled environment.

* (paraphrase of Koen)

Software refers to the ‘non-hardware’ aspects or components of a system.
A Softcrafter is a person who practices the craft of programming software for computers

*http://www.gilb.com/tiki-download _file.php?fileld=25
— Source: Planguage Glossary. For far more detail and far more concepts.




Assertion:

As several have already pointed out:

— we need to agree on the very basic concepts of
software + engineering.

— In particular we need to carefully distinguish between
engineering, and the craft of programming.

— And several participants have already, in my view,
totally failed to do so.

— The people who are going to discuss programming
should join a different organization, “Improving
Softcrafting” or “Better Coding”.

— SEMAT is about software engineering.



Engineering Core:

* The core of all engineering is deeply reasoned
by Billy Koen in “DISCUSSION OF THE
METHOD: Conducting the Engineer's
Approach to Problem Solving”, see paper at
http://www.cse.hcmut.edu.vn/~minhle/
congtackysu 2008/Engineering Method.pdf

* | have paraphrased his definition in
“Engineering’ above.




SOFTWARE SPECIAL?

* The only distinction between software
engineering,

* and all other engineering disciplines,
* should be the soft engineering artefacts
themselves,

— and corresponding knowledge of their probable
characteristics.



CENTRAL GUIDING ORACLE
(what’s it all about?)

* The central guiding principle, is

- that the software engineer
works

— to deliver best and sufficient
value for resources,

—within constraints.



WHAT’S USEFUL TO TEACH AND DO?

* Consequently any means — processes, rules, standards,
principles, tools, etc. — that currently contribute to that
‘value for resources’, are valid, interesting, and useful
software engineering components.

* Any provably better means, are better where proven
better:

— even if they are not currently popular or consensus.

— Even if they have no scientific validation or long history
yet.

— Naturally, promising methods should be validated
scientifically in the long term.




Kernel:

* Overview:
http://www.gilb.com/tiki-
download file.php?fileld=98

e Paper: “Undergraduate Basics”

Mittwoch, 29. April 2015 © Tom@Gilb.com



Concepts:

1. independent of cross references to them
such as words, symbols.

See:

http://www.gilb.com/tiki-download file.php?
fileld=25

And CE book (a subset) for practical example,
655 Concepts.




Principles:

e 1. eternal, powerful, general, practical,
wisdom

* See:
http://www.gilb.com/tiki-download file.php?
fileld=352

* For the CE Planguage Collection.

Mittwoch, 29. April 2015 Tom@Gilb.com 10



Measures:

1. A proven method for capturing knowledge about a
discipline

2. absolutely essential to ‘engineering’, ‘management’,
science, reasoning

3. a language to describe almost any

discipline artifact: processes, rules, principles, tools, etc.

A key to objectivity and clarity.

See: http://www.gilb.com/tiki-download file.php?fileld=26
Scales of Measure Chapter 5 of CE.




Processes

1. logical steps of actions to capture wisdom, and
define work

2. a way to transfer wisdom

See:
http://homepage.mac.com/tomegilb/filechute/

%20%20Gilb%20Competitive%20Engineering

%20Bo0k%20copy%201.pdf The CE book,

Processes every chapter.

Mittwoch, 29. April 2015 © Tom@Gilb.com 12



Rules:

1. necessary powerful practices of engineering
specification
2. a way to transfer wisdom

See:
http://homepage.mac.com/tomgilb/filechute/

%20%20Gilb%20Competitive%20Engineering

%20B0o0ok%20copy%201.pdf The CE book,

Rules every chapter

Mittwoch, 29. April 2015 © Tom@Gilb.com 13



Representations

(any and all useful representations are fine): But
representations must include the ability to model all costs
and qualities!

Views

Modelling

Templates: see examples in CE book, URL above.
Tools

lcons: See Examples in Planguage Glossary, URL Above, and
paper

http://www.gilb.com/tiki-download file.php?
fileld=37&highlight=plicons




KEY CONCEPTS FROM THE
655-CONCEPT PLANGUAGE GLOSSARY

e http://www.gilb.com/tiki-download file.php?
fileld=125

* (download of the Concept Glossary)

Mittwoch, 29. April 2015 © Tom@Gilb.com “ 15



Software

* Software refers to the ‘non-hardware’ aspects
or components of a system.

* |t specifically includes

— computer programs,
— data

e (computer readable files and databases),
— and software documentation and plans

* (any form of specification or plans made by people
concerning software).



SOﬂWa re E ngi n ee r: Concept *571

A software engineer is an engineer with specialty in software.

They are characterized by the ability to
— assemble software components based on quantified attributes.

— This ability is aimed at the need to meet multiple quantified
requirement performance levels, within specified resource
constraints, and other constraint limitations.

Consequently software engineers think in terms of

— measurable system performance (including quality)
characteristics, and costs for design, implementation,
decommissioning, adaptation, and operation.

— They know how to access the multiple quantified attributes of a
design component

— and how to measure these attributes in the systems they
engineer.




Software Engineering Concept *572

Software engineering is the discipline of making software systems deliver the
required value to all stakeholders.

Software engineering includes

— determining stakeholder requirements, designing new systems, adapting older systems,
subcontracting for components (including services), interfacing with systems
architecture, testing, measurement, and other disciplines.

— It needs to control computer programming and other software related sub-processes
(like quality assurance, requirements elicitation, requirement specification), but it is not
necessary that, these sub-disciplines be carried out by the software engineering process,
itself.

The emphasis should be on control of the outcome - the value delivered to
stakeholders, not of the performance of a craft.

The concept ‘required value’ (above) is used to emphasize the obligation of the
software engineer to determine the value or results truly needed by the
stakeholders, and not to be fooled by omissions, corruptions and
misunderstandings of the real world value.



:ﬁ
02
:v
3
7=

3

/

SN INIHI09Y
1545 HO 1 MO0N 0 NI ¥
4

rnmmn WMLA0E

-

e

PN TV Nnsn

FTHITRIOND &

COMPETITIVE

ENGINEERINAG

A HARDBOOK FOR SYSTEMS ENGINEERING, REQUIREMENTS
FNGINEERING, AND SOFTWARE ENGINEERING USING PLANGUAGE

M lttwﬁ&g.’/;hgdnﬁeﬁ)gég%%gcom/tomgiIb/ﬁlech ute/%20%20Gilb%g)oz.l—(())rg1 p@n‘l%{/lg%g%ﬂgineering%ZOBook%20copy%201.pdf



Mittwoch, 29. April 2015

© Tom@Gilb.com

20



