
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  

The	  Semat	  Workshop	  on	  a	  
General	  Theory	  of	  Software	  Engineering	  

2012	  

November	  8-‐9,	  2012	  
KTH	  Royal	  Institute	  of	  Technology	  
Stockholm,	  Sweden	  

Ivar	  Jacobson	  
Michael	  Goedicke	  
Pontus	  Johnson	  

Proceedings	  



Thursday, November 8

09:00 – 10:00 Joint GTSE-PFSE introduction
Ivar Jacobson, Michael Goedicke, Arne Berre, Pontus Johnson 

10:00 – 10:30 General theories: an exposé
Pontus Johnson

Coffee

11:00 – 12:00 Aspects of  theories I
Per Runeson, Theory Building Attempts in Software Engineering
Tero Päivärinta and Kari Smolander, A Framework for Building Theories from Software Development Practice
Nada Bajnaid, Algirdas Pakštas and Shahram Salekzamankhani, Ontology-Based Modeling of  the Software Quality Assurance Knowledge
Harlod Lawson, Software Engineering in the System Context

Lunch

13:15 – 14:00 Aspects of  theories II
Jürgen Börstler, The Importance of  Empirical Software Engineering
Howell Jordan and Rem Collier, Measuring Quality: A Cornerstone of  Theory in Software Engineering
Pontus Johnson and Iaakov Exman, Requirements on theories of  software engineering

14:00 – 15:00 Discussion: What are the objectives of  a theory of  software engineering? How can a theory be of  use in 
practice? 

Coffee

15:30 – 16:30 Discussion: What questions should a theory of  software engineering answer? 

16:30 – 17:00 Invited presentation
Capers Jones, Software Excellence

18:30 –            Dinner

Friday, November 9
08:30 – 09:00 Invited presentation
Dines Bjørner, The Triptych Method and its Relations to SEMAT

09:00 – 09:30 Theory proposals I
Paul Ralph, Sensemaking-Coevolution-Implementation Theory
Ilia Bider, Knowledge Transformation in Software Development Processes

Coffee

10.00 – 10:45 Theory proposals II
Hannu-Matti Järvinen and Mikko Tiusanen, States and Transformations for Software Engineering Theory
Iaakov Exman, Linear Software Models
Ekkart Kindler, On the dimensions of  software documents – An idea for framing the SE process

10:45 - 12:00 Discussion: What should the main elements of a general theory of  software engineering be?

Lunch

13:15 - 14:30 Discussion: What are the most important qualities of  a general theory of  software engineering?

Coffee

15:00 – 15:30 GTSE Summary

15:30 - 16:00 Joint GTSE-PFSE summary

Program GTSE 2012



Sensemaking-Coevolution-Implementation Theory
A Model of the Software Engineering Process in Practice

Paul Ralph
Department of Management Science

Lancaster University
Lancaster, UK

paul@paulralph.name

Abstract—Sensemaking-Coevolution-Implementation Theory is 
a teleological process theory of the practice of  designing 
complex software systems. It posits that an independent agent 
(design team) creates a software system by alternating between 
its three titular activities. Its veracity has been demonstrated 
using questionnaire and case-study methods. It has  been used 
to evaluate software engineering curricula and highlight 
deficiencies in software engineering methods and practices.

Keywords-SCI Theory; process theory; design; coevolution

I.  SCI THEORY

Theories of the software engineering (SE) process have 
historically been dominated by stage-gate or lifecycle 
models,  beginning with the Waterfall Model [1]. This was 
followed by a “methodology era”, during which SE was 
usually conceptualized through a methods lens, and a “post-
methodology era” where methods continued to dominate 
conceptualization of SE despite their decreasing relevance to 
practice [2]. These lifecycle models and the methods based 
on them are fundamentally misleading due to their 
empirically debunked assumptions [3], [4]. 

Sensemaking-Coevolution-Implementation Theory  
(SCI) was developed as an alternative to lifecycle models of 
SE [5]. It is based on Alexander’s model of the 
“selfconscious” design process [6], reflection-in-action [7], 
and theorizing of coevolution by [8] among others. SCI 
(Figure 1, Table 1) posits that where a complex software 
system is developed by an independent, goal-oriented agent, 
that agent will engage in three basic processes – 
Sensemaking, Coevolution and Implementation – in a self-
directed sequence. 

The agent may be an individual or team. The arrows in 
Figure 1 indicate relationships between concepts and 
activities,  not sequence – the agent may transition between 
activities in any order. In a typical project, Sensemaking may 
include interviewing stakeholders, writing notes, organizing 
notes, reading about the domain, reading about technologies 
that could be used in project, sharing insights among team 
members and acceptance testing (getting feedback from 
stakeholders on prototypes). Implementation may include 
coding, managing the codebase, writing documentation, 
automated testing, creating unit tests,  running unit tests and 
debugging.

While Coevolution does not directly map to a variety of 
well-known software engineering activities,  it is observable 
in real projects. For example,  when a team stands around a 
whiteboard drawing informal models and discussing how to 
proceed, they often oscillate between ideas about the design 

object (e.g., ‘how should we distribute features between the 
partner channel screen and the partner program screen?’) and 
the context (e.g., ‘you know what, I think channels and 
programs are just different names for the same thing.’). This 
mutual exploration of context and design object is 
Coevolution. Coevolution may occur in planning meetings 
and design meetings, following breakdowns or during an 
individual’s internal reflection.

Evolution and coevolution are easily confused. In design 
literature,  evolution, specifically evolutionary prototyping, 
denotes the gradual improvement of a software object.  In 
contrast, coevolution refers to “developing and refining 
together both the formulation of a problem and ideas for a 
solution, with constant iteration of analysis, synthesis and 
evaluation processes between the … problem space and 
solution space” {Dorst:2001tq, p. 434}.  SCI therefore 
distinguishes between two types of iteration – coevolution 
denotes simultaneously revising ideas of problem and 
solution within minutes or hours, while evolution denotes 
improving software artifacts over weeks and months. 

SCI is a teleological process theory,  intended to explain 
how software is developed in practice. Van de Ven [9] 
distinguishes two types of theories – variance theories 
explain the causes of consequences of something and often 
specify the relative contribution of multiple antecedents, 
while process theories explain how and why an entity 
changes and develops. Process theories come in at least four 
types [10]: lifecycle theories posit that an entity progresses 
through a series of stages in a predefined sequence; 
evolutionary theories posit a population of entities that 
changes as less fit entities expire and remaining entities 
change and recombine; dialectic theories posit that changes 
result from shifts in power among conflicting entities; 
teleological theories posit an agent who purposefully selects 
and takes actions to achieve a goal.  SCI therefore takes a 
teleological approach to causality: software artifacts change 
as human beings (having free will) choose to change them. 
This differs from the probabilistic approach to causality 
adopted by many variance theories. 

A survey [11] of over 1300 software development 
professionals found that SCI better described their processes 
than either Waterfall or an alternative SE process theory, the 
Function-Behavior-Structure Framework  (FBS) [12]. 
Emerging evidence from an ethnographic study of an 
English software development team also supports SCI’s core 
claims and the impossibility of understanding conventional 
SE through Waterfall or FBS. SCI has been used to analyze 
SE curricula [13]. It can also be used to analyze design 



methods and practices, and to teach SE and project 
management. 

REFERENCES
[1] W. Royce, “Managing the development of large software systems,” 

presented at the Proceedings of WESCON, the Western Electronic 
Show and Convention, Los Angeles, USA, 1970.

[2] D. Avison and G. Fitzgerald, “Where Now for Development 
Methodologies,” Communications of the ACM, vol. 46, no. 1, pp. 79–
82, 2003.

[3] F. P. Brooks, The Design of Design: Essays from a Computer 
Scientist. Addison-Wesley Professional, 2010.

[4] P. Ralph, “Introducing an Empirical Model of Design,” in 
Proceedings of The 6th Mediterranean Conference on Information 
Systems, Limassol, Cyprus, 2011.

[5] P. Ralph, “The Sensemaking-Coevolution-Implementation Theory of 
Software Design,” MIS Quarterly, under review.

[6] C. W. Alexander, Notes on the synthesis of form. Harvard University 
Press, 1964.

[7] D. A. Schön, The reflective practitioner: how professionals think in 
action. USA: Basic Books, 1983.

[8] N. Cross, “Research in Design Thinking,” in Research in design 
thinking, N. Cross, K. Dorst, and N. Roozenburg, Eds. Delft, 
Netherlands: Delft University Press, 1992.

[9] A. H. Van de Ven, Engaged scholarship: a guide for organizational 
and social research. Oxford, UK: Oxford University Press, 2007.

[10] A. H. Van de Ven and M. S. Poole, “Explaining development and 
change in organizations,” The Academy of Management Review, vol. 
20, no. 3, pp. 510–540, Jul. 1995.

[11] P. Ralph, “Comparing Two Software Design Process Theories,” in 
Proceedings of the Fifth International Design Science Research in 
Information Systems and Technology Conference, St. Gallen, 
Switzerland, 2010, vol. 6105, pp. 139–153.

[12]   J. S. Gero and U. Kannengiesser, “An ontological model of emergent 
design in software engineering,” presented at the 16th International 
Conference on Engineering Design, Paris, France, 2007.

[13] P. Ralph, “Improving coverage of design in information systems 
education,” in Proceedings of the 2012 International Conference on 
Information Systems, Orlando, FL, USA, 2012.

Mental 
Picture of 
Context

Sensemaking

Goals

Design Agent

Mental Picture 
of Design 

Object

Implementation

Design Object

Primitives

Coevolution

Context

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

  
Figure 1. Example of a TWO-COLUMN figure caption: (a) this is the format for referencing parts of a figure.

Concept / Activity Meaning

Constraints the set of restrictions on the design object’s properties
Design Agent an entity or group of entities capable of forming intentions and goals and taking actions to achieve those goals 

and that specifies the structural properties of the design object
Context the totality of the surroundings of the design object and agent, including the object’s intended domain of 

deployment
Design Object the thing being designed

Goals optative statements about the effects the design object should have on its environment
Mental Picture of Context the collection of all of the design agent’s beliefs about its and the design object’s environments

Mental Picture of Design Object the collection of all of the design agent’s beliefs about the design object
Primitives the set of entities from which the design object may be composed

Sensemaking the process where the design agent organizes and assigns meaning to its perception of the context, creating and 
refining the mental picture of context

Coevolution the process where the design agent simultaneously refines its mental picture of the design object, based on its 
mental picture of context, and the inverse

Implementation the process where the design agent generates or updates the design object using its mental picture of the design 
object

TABLE I. CONCEPTS AND RELATIONSHIPS OF SCI THEORY, DEFINED



Measuring Quality: A Cornerstone of Theory in Software Engineering

Howell Jordan
Lero @ University College Dublin

Ireland
howell.jordan@lero.ie

Rem Collier
University College Dublin

Ireland
rem.collier@ucd.ie

Abstract—In any engineering domain, a detailed under-
standing of what constitutes a ‘good’ product is vital for
the development of theories that are both general and useful.
However, software engineering researchers’ understanding of
desirable product qualities is not yet fully mature, especially
for continuously-evolving software systems. Inspired by two
historical examples, this paper calls for a discipline-wide effort
to precisely define the attributes and variables of software
product quality in a measurable way. We expect this effort will
lead to two major contributions. Firstly, the defined attributes
and variables should act as units in any general theory of
software engineering. Secondly, once instruments to measure
these attributes and variables are developed, systematic large-
scale empirical studies of software product quality will become
much easier, eventually yielding a rich corpus of data which
should prove fertile for further theory building.

Keywords-Software quality; Software measurement

I. INTRODUCTION

It seems certain that the scope of any general theory
of software engineering must include not only software
developers and development methods, but also the software
product itself. The task of building a general theory of soft-
ware engineering then consists of identifying relationships
among the attributes and variables - or units - of these
objects [1]. This paper aims to spark a discussion about
which product attributes and variables should be included
in such a theory, and how they should be measured. Since
the utility of a theory is determined by the hypotheses that
can be derived from it, we begin by asking: what predictions
should a universal theory of software engineering be capable
of making?

II. PREDICTION AND SOFTWARE EVOLUTION

In mature engineering disciplines, theories from the math-
ematical and physical sciences are used extensively to
ensure that a proposed product will meet the customer’s
requirements. Similarly, many software engineers assert that
the correctness of programs should be assured through
mathematical proof [2], or more generally that “To build
something good ... you have to predict in the design stage the
qualities of the end product” [3]. In this section we will argue
that a broad definition of quality is required, if theory is to
help developers achieve long-term customer satisfaction.

A limitation of the proof-of-correctness view is that a
definitive ‘end product’ does not always exist. Many soft-
ware systems continue to evolve long after deployment,
often leading to variants and enhancements far in excess
of their original scope. Therefore it is crucial that software
is not only correct, but also easy to modify.

Despite advances in requirements elicitation and specifi-
cation techniques, it is likely that software evolution will
become increasingly common for three reasons. Firstly,
customers don’t always know what they want. A customer -
afflicted by the I’ll Know It When I See It (IKIWISI) syn-
drome - may be unable to provide a system’s requirements
until a prototype has been delivered, and this is especially
common for graphical user interfaces [4]. Secondly, for any
product operated by humans there is no such thing as a
perfect design; “the problems of multiple users or changing
fashion or new aesthetics will always be lying in wait” [5,
ch.3]. Even for software with no human user interfaces,
as interconnection between systems grows, updates to keep
pace with external changes become routine [4]. Finally,
future variant systems, if any, are likely to be accommodated
in software where possible, due to the relatively malleable
nature of software as an engineering medium. For example,
“most car manufacturers now offer engines with different
characteristics ... frequently these engines ... differ only in
the software of the car engine controller” [6]. In summary,
a practical unifying theory of software engineering should
be capable of predicting all qualities that are important to a
long-lived evolving family of software products.

III. DEFINING PRODUCT QUALITY

Software product quality is often modelled as a hierarchy
of attributes [7]. While some attributes such as reliability are
well defined, there is no overall agreement on the content
or structure of this hierarchy; in particular, many attributes
relating to the nonfunctional properties of software and its
evolution are poorly understood. We argue that a major
research effort is required to clearly define them.

From a scientific perspective, it is crucial that such defi-
nitions are not predicated on specific software technologies.
For example, several authors have proposed object-oriented
coupling and cohesion (e.g. [8]) as measures of maintain-
ability, and this view is supported by empirical evidence



Figure 1. Empirical engineering in action: the first Tacoma Narrows bridge,
oscillating torsionally just prior to its collapse. A simple optical instrument
to measure the vertical displacement of the bridge deck can be seen on the
left of the picture. The blurred figure near the centre line of the roadway
is almost certainly that of Professor Burt Farquharson.

in certain contexts (e.g. [9]). However, these definitions are
rooted in the object-oriented paradigm, so they cannot be
used to compare, for example, object-oriented and functional
programming approaches. It follows that any theories built
on these definitions cannot predict which method or lan-
guage would be preferable under given conditions - and
these are currently some of the most significant questions
in software engineering research [3].

IV. EXAMPLES FROM ENGINEERING HISTORY

The history of software engineering is relatively short,
so for illustrative examples of product quality definition
problems we must turn to other engineering disciplines.

A. Tacoma Narrows Bridge Collapse, 1940

The first Tacoma Narrows bridge, which opened in July
1940 and collapsed five months later, is a well-known
example of design failure due to incomplete theoretical
knowledge. The collapse was caused by violent torsional
oscillations in the bridge deck, induced by aeroelastic flut-
tering. The design, while ambitious in its scope and daring
in its economy of materials, did not apparently violate any
contemporary theories of good bridge building [10, ch.9].
However it is surprising to note that, by 1939, flutter in
aircraft wings was theoretically quite well understood, and
had been widely reported for at least two decades [11]. The
Tacoma Narrows disaster can thus be viewed as a collective
failure to understand that aeroelasticity is an important
attribute of bridge design quality.

An investigation into the disaster was led by Burt Far-
quharson of the University of Washington, who began his
study of the bridge soon after its opening, and was present
at the time of its collapse. Figure 1 shows a still image of
the bridge on that day, taken from 16mm Kodachrome video
footage which was fortunately recorded by the owners of a

nearby camera shop. To the left of the picture, an optical
gauge constructed by Farquharson’s team can be seen; this
allowed the bridge’s vertical oscillations to be precisely
measured and recorded using a film camera positioned
on the shore1. These observations and measurements were
crucial to the disaster investigation, and ultimately led to
the integration of aeroelastic flutter into mainstream bridge
engineering theory during the 1950s [12]. In the intervening
period, the Bronx-Whitestone bridge, which is of similar
design, was strengthened against the symptoms of aeroelastic
fluttering by adding extra material [10, ch.9]; however such
quick-fix solutions to quality issues are rarely available in
software engineering.

It is likely that the first Tacoma Narrows bridge was not
the first bridge to be damaged or destroyed by aeroelastic
fluttering [11]; and some authors consider that the 1940
collapse might have been prevented if these earlier incidents
had been observed, measured, and studied in more detail
[10, ch.9]. Collectively, the history of long-span suspension
bridge design illustrates that a rich set of observations and
measurements may be an essential prerequisite to successful
theory building. The lessons learned from Tacoma Narrows
also suggest that software engineering may have much to
gain from detailed studies of project failure.

B. Langley Field Aircraft Experiments, 1919-1941
Once recognised, the problem of a poorly-understood

product quality attribute can apparently be overcome by a
concerted research effort.

Before 1920, the maneuvrability of aircraft could not
be predicted at design time, and was mostly a matter of
trial and experience. Prototype aircraft sometimes exhibited
dangerous handling characteristics, and often these flaws
could only be corrected by costly and time-consuming
modifications [13, ch.4]. At Langley Field aeronautical lab-
oratory, Virginia, from 1919 to 1923, this problem began
to receive serious research attention. A lengthy series of
flight tests successfully moved the focus of investigation
from qualitative judgements by pilots to quantitative mea-
surements of the control forces required to perform various
maneuvres. Key to this progress was the development at
Langley of experimental procedures based on new mea-
suring instruments and data recorders, such as the three-
axis accelerometer [14] and synchronizing chronometer [15].
These devices relieved pilots from having to pause during
and between maneuvres to record measurements manually,
and thus allowed a far greater quantity of more accurate
product data to be collected [16, ch.3].

By the mid 1930s, the growth of commercial air travel
and the problem of pilot fatigue over longer journeys led to

1At the instant shown in figure 1, the striped vertical pole and the markers
attached to the street lamps behind it are clearly not aligned, due to the
extreme twisting motion of the bridge. Clearly, the displacement gauge was
not designed to measure torsional oscillations; the bridge’s final mode of
collapse apparently came as a surprise even to Professor Farquharson.



renewed interest in flying qualities2. Under the leadership
of Robert Rowe Gilruth, comprehensive flight tests of at
least 18 aircraft and ground experiments to discover the
forces exerted by pilots on the controls led to the publication
in 1941 of the first full flying qualities specifications3.
These specifications included a beautifully simple measure
of maneuvrability - the stick force per g - that is equally
applicable to all types of aircraft and is still in use [16,
ch.3]. The experiments also yielded the large body of data
necessary to build theories of maneuvrability [13, p.32], that
today allow flying qualities to be accurately predicted from
a given aircraft design.

V. CONCLUSIONS

Any holistic view of software product quality should
include attributes that are relevant to continuously-evolving
systems; however many such attributes are currently only
poorly understood. Our first historical example, taken from
the pioneering era of long-span suspension bridge design,
illustrates the desirability of a complete theoretical under-
standing of product quality in any engineering endeavour.
This theoretical understanding might take many decades
to arise, unless a concerted effort is made to identify the
phenomena of interest and study them by observation and
measurement of product instances.

Our second example, taken from the early years of long-
range aircraft design, shows how instrument development
can enable large-scale product observations, which in turn
may yield concise and useful theoretical knowledge. Vin-
centi identifies in this example seven phases of product qual-
ity research: familiarization with problem; identification of
variables, concepts, and criteria; development of instruments
and techniques for measurement; growth of opinion re-
garding desirable qualities; scheme for (empirical) research;
measurement of qualities for a cross-section of products; and
assessment of results to arrive at general conclusions [16,
p.102]. While these phases do not represent a strict ordering,
in our example the important theoretical results only began
to emerge during the empirical phase. Noting the apparent
shortage of widely-accepted theories in software engineering
[3], we suggest that a lack of interest in measurements and
instruments may be holding back empirical research in our

2In the period 1923 to 1935, researchers at Langley had mostly been
preoccupied with aircraft performance. Walter Vincenti remarks that “con-
trol of an airplane is, in a sense, secondary to its speed, range, ceiling, or
carrying capacity ... only when the performance gains had been at least in
part realized did concentration on problems of stability and control become
advantageous” [16, p.78]. It is interesting to consider whether a similar set
of implicit research priorities currently exists in software engineering.

3Instrument development continued at Langley throughout the 1930s and
1940s, however the details were not published. William Hewitt Phillips,
who by 1945 was head of Stability and Control at Langley, recalls that
the restriction was imposed “so that industry would have to come to us
to get some of the more advanced research done” [16, p.277]. Aircraft
measurement and instrumentation had evidently evolved from a routine
engineering activity to a specialist scientific discipline producing knowledge
of potential economic importance.

discipline. We hope that the removal of this barrier will
eventually lead to significant theoretical progress.

ACKNOWLEDGMENTS

We thank Klaas-Jan Stol, and the participants of the SE-
MAT General Theory of Software Engineering 2012 work-
shop, for many useful comments and reading suggestions.
This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855.

REFERENCES

[1] R. Dubin, Theory building. Free Press, 1978.

[2] E. Dijkstra, “Programming as a discipline of mathematical
nature,” Am. Math. Mon., vol. 81, no. 6, pp. 608–612, 1974.

[3] P. Johnson, M. Ekstedt, and I. Jacobson, “Where’s the theory
for software engineering?” IEEE Softw., vol. 29, no. 5, pp.
96–96, 2012.

[4] B. Boehm, “A view of 20th and 21st century software en-
gineering,” in Proc.28th Int. Conf. on Software Engineering.
ACM, 2006, pp. 12–29.

[5] H. Petroski, Small things considered: Why there is no perfect
design. Random House, 2003.

[6] M. Svahnberg, J. Van Gurp, and J. Bosch, “A taxonomy
of variability realization techniques,” Software: Practice and
Experience, vol. 35, no. 8, pp. 705–754, 2005.

[7] B. Kitchenham and S. Pfleeger, “Software quality: The elusive
target,” IEEE Softw., vol. 13, no. 1, pp. 12–21, 1996.

[8] S. Chidamber and C. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp.
476–493, 1994.

[9] D. Darcy, C. Kemerer, S. Slaughter, and J. Tomayko, “The
structural complexity of software: An experimental test,”
IEEE Trans. Softw. Eng., vol. 31, no. 11, pp. 982–995, 2005.

[10] H. Petroski, Design paradigms: Case histories of error and
judgment in engineering. Cambridge University Press, 1994.

[11] I. Garrick and W. Reed III, “Historical development of aircraft
flutter,” J. Aircraft, vol. 18, no. 11, pp. 897–912, 1981.

[12] K. Bülah and R. Scanlan, “Resonance, Tacoma Narrows
bridge failure, and undergraduate physics textbooks,” Am. J.
Phys., vol. 59, p. 2, 1991.

[13] W. Phillips, Journey in aeronautical research: A career
at NASA Langley Research Center, ser. Monographs in
Aerospace History. NASA, 1998, no. 12.

[14] H. Reid, “The NACA three-component accelerometer,” Na-
tional Advisory Committee for Aeronautics, Tech. Rep., 1922.

[15] W. Brown, “The synchronization of NACA flight records,”
National Advisory Committee for Aeronautics, Tech. Rep.,
1922.

[16] W. Vincenti, What engineers know and how they know it:
Analytical studies from aeronautical history. Johns Hopkins
University Press, 1990.



A Framework for Building Theories from Software 
Development Practice 

Tero Päivärinta 
Computer and Systems Science 

Luleå University of Technology, Sweden 
tero.paivarinta@ltu.se 

Kari Smolander 
Department of Information Technology 

Lappeenranta University of Technology, Finland 
kari.smolander@lut.fi

 
 

Abstract—The paper presents a framework for building theory 
from development practices. The framework locates practices in 
a learning loop that is situated in a development context. The 
framework recognizes that practices are related to their learned 
rationale that may come from previous experiences, i.e. observed 
impacts of practices, or from existing theory. 

I. INTRODUCTION  
Software engineering is a practice-oriented field and the work 
of the software developer is in the core of its research. Lack of 
theory in software engineering has been recognized by 
researchers [1] and attempts have been made to establish a 
theory base [2]. In this paper we present a framework for 
building theories’ from software development practice using 
six concepts and their relationships. The first part of this paper 
gives a brief definition of these concepts. The second parts ties 
them together as a framework through which theories of ISD 
practices can be built by learning from practice. An earlier 
version of the framework has been published in [3]. 

II. ESSENTIAL CONCEPTS FOR CREATING THEORIES OF 
SOFTWARE DEVELOPMENT 

Our framework builds on six main concepts to be 
distinguished in order to learn from software development 
practice and to build theories of it: learning, a practice, 
development context, rationale, impact, and theory.  

Learning is based on Argyris & Schön [4], to the idea of 
“theories-in-use”. To learn from practice requires that we 
identify or assume causal relationships between actions taken 
during software development and desired outcomes. Learning 
from a particular set of development actions requires that we 
treat development projects and actions as “experiments” from 
which we generate evidence to test selected theories-in-use 
with regard to selected ideas of development practices. 

A central concept in our framework is the concept of a 
practice. One dictionary definition of a practice is “something 
people do regularly” [5]. In context of a development project 
or an organization, a development practice may become an 
organizational practice or routine, which can be defined as 
the organization’s routine use of knowledge, especially 
“know-how” [6]. The concept of “best practices” illustrates an 
assumption that abstractions of such know-how can be 
usefully analyzed and lessons learned from practice can be 
transferred through them between organizational contexts and 
over time. However, organizational practices often have tacit 
components embedded partly in individual skills and partly in 
collaborative social arrangements. If we compare a software 
development method and a practice, a method adopted in an 
organization always embodies a predefined practice or a set of 
them, whereas a practice is not always defined at the detailed 
and explicit level, at least with regard to all potential elements 

of method knowledge. 
A software development effort takes place in a development 

context. For example, Orlikowski [7] identifies that the role of 
the system, development structure and operations, 
development policies and practices, development staff, 
corporate strategies, organizational structure and culture, 
customers, competitors, and available technologies represent 
contextual categories of issues which may influence changes 
in development practices. A recent study [8] identified 170 
different situational factors that affect the software 
development process. 

The concept of rationale is useful for understanding the 
reasons for an organization’s development practices in general 
(i.e. also those practices in use, which do not necessarily fulfill 
the characteristics of a thorough method). A rationale for a 
development practice provides justifications for the creation, 
use and modification of the practice or set of practices. 

Learning requires analysis and identification of impacts of 
the practices to the software, project, or to the development 
context in general. Such impacts may be desired already 
according to the explicit method or practice rationale(s), or 
they may be unexpected, sometimes even unwanted. 

Finally, these concepts are needed for creating and 
evaluating theories of software development practices. That is, 
we pursue theories which can analyze, describe, and explain 
contextual practices, ultimately aiming at a level of prediction. 
That is, we believe that it is useful to analyze the practice and 
aim at predictive theories of certain types of development 
practices, with regard to their impacts on the development 
products, projects and processes, and contexts. 

III. FRAMEWORK DEFINITION 
In the following, let us relate these concepts to each other 

to form a framework to guide research on development 
practices. Figure 1 relates these concepts together and shows 
their relationships we need to understand in order to build 
theory from software development practice. 

 
Figure 1 A framework for building theories from development practices. 

Learning (L) is a boundary-spanning mechanism which 
need to exist, on the one hand, in a development context (DC) 
so that previous theories (T, including previous, more or less 
well-grounded, methodological recommendations) of 



development can inform local rationale (R) for new practices 
(T → L → R) and that observed impacts (I) of the target 
organization’s previous practices (P) can inform further local 
rationality to adjust the practices (I → L → R). On the other 
hand, learning is needed between development organizations 
and the theory builders, who observe development actions and 
local interpretations of such actions in practice and try to 
abstract lessons to be learned from the particular practices in 
question (L → T) (Figure 1). 

Development context (DC) involves all the issues which 
have impact on how practices in the target organization or 
project are socially constructed and how the software 
development organization can learn from its practices. The 
context has impact on rationale (R) to implement new 
practices and to motivate change, on the actual construction of 
practices (P) themselves, on the impacts (I) reached from the 
desired change, and on the learning process and lessons 
learned. That is, practices, their impacts, and learning may not 
be purely based on the identified rationale alone, but can be 
affected by contextual issues (Figure 1). If contextual issues 
are explicitly identified before implementing a new set of 
practices, it becomes a part of the rationale. However, some 
contextual issues may have a more implicit effect on enacted 
practices and their impacts, recognized only after new 
practices have been tried out. 

Learning from local and contextual development practices 
requires good understanding of how practices are implemented 
and used in any target context of development. The contextual 
rationale(s) for particular practices and their improvements 
should cause meaningful change(s) in a practice or a set of 
practices, which are, again, often a part of a larger, interrelated 
set of practices (R → ∑ P, ∆(Pi → Pi’)) in the context. 
Moreover, contextual impact(s) after a practice has been 
introduced or changed need to be studied (∆(Pi → Pi’) → I), 
and lessons learned from the observed impacts need to be 
distilled (I → L)  (Figure 1.) 

If observed changes and improvements in local practices 
are used to contribute to a theory (T) of a selected set of 
general-level development practices (beyond the context in 
question) through a learning process (L → T) , then we need 
also to recognize ideas of more generic or universal rationales 
giving reasons to implement certain types of practices (RU→ 
∑ PU→IU). As well, generic ideas to categorize development 
contexts, which may have impact on rationales, enactment of 
particular practices, and impacts resulting from particular 
practices, may be theorized. Through learning from the target 
context(s), software development research may theorize 
further on more universal issues of the development context 
(DCU), their impact on rationales for practices, actual practice 
domains of interest, and the generalized ideas of impacts from 
choosing particular practices (DCU →(RU→ ∑ PU→IU)) 
(Figure 1). Here, it is important to denote that the descriptions 
of development contexts, rationales, practices, and their 
impacts at the level of a theory should be distinguished from 
the observed practices (or local interpretations of practices) in 
the context. 

We believe that theories of software development practices 
should pursue to promote understanding of reasons why to 
consider implementation of particular idealized practices and 
impact of those practices, discussed in the light of theoretical 
categories of contextual issues and contingencies. Such 
theories (T) would be able to answer to three research 

questions, which we believe to be of interest for scholars, 
educators, and practitioners (Figure 1.): 

• Why are particular practices followed (or not) in 
software development? (RU→ ∑ PU) 

• What are the expected impacts (both desired and 
undesired) from adhering to a set of certain pre-
described practices? (∑ PU→IU) 

• How are certain types of development contexts 
expected to affect on the rationale for, the impact on, 
and the implementation of certain pre-described 
practices? (DCU →   (RU→  ∑ PU→   IU)) 

IV. FINAL REMARKS 
The biggest differences between our framework and the 

Essence by the SEMAT initiative [2] are: 
1. The Essence attempts to build ontology of software 

development by identifying pertinent ‘alphas’ and 
‘activity spaces’. Our framework is more research 
oriented and uses a very limited set of concepts and 
leaves the ontology building to research through 
observation and learning. 

2. In our framework all theory is used and produced 
through the lens of learning. In the Essence learning is 
not so much a part of theory creation. 

Although we have presented the framework rather 
formally, we believe that the actual theories of software 
development practice are usually informal by nature. Software 
development is a human activity that is done in social 
organizations. The development context is therefore often 
unique and exact repeating of studies is hard. Software itself is 
often social and linguistic by nature. Therefore results of many 
empirical studies will remain descriptive. Hence, advanced 
theorizing will require synthesizing over the existing base of 
rather idiographic empirical results from literature. Any 
theorizing effort would require a knowledge base including 
thorough descriptions of lessons learned from contextual 
software development cases, to enable establishment of 
theoretical patterns among similar types of cases. Theoretical 
efforts to integrate already existing reports and lessons learned 
into more generic theoretical models are also required. 

V. REFERENCES 
[1] P. Johnson, M. Ekstedt, and I. Jacobson, “Where’s the Theory for 

Software Engineering?,” Software, IEEE, vol. 29, no. 5, pp. 96–96, 
2012. 

[2] SEMAT, “Essence - Kernel and Language for Software Engineering 
Methods (OMG ad/2012-08-15, Revised submission),” 
http://semat.org/wp-content/uploads/2012/02/12-08-15.pdf, 01-Oct-
2012. . 

[3] T. Päivärinta, K. Smolander, and E. Å. Larsen, “Towards a Framework 
for Building Theory from ISD Practices,” in Information Systems 
Development, J. Pokorny, V. Repa, K. Richta, W. Wojtkowski, H. 
Linger, C. Barry, and M. Lang, Eds. Springer New York, 2011, pp. 
611–622. 

[4] Argyris, Chris and Schön, D. A., Organizational Learning II. Reading, 
MA: Addison-Wesley, 1996. 

[5] Collins CoBUILD, English Dictionary. 1989. 
[6] B. Kogut and U. Zander, “Knowledge of the Firm, Combinative 

Capabilities, and the Replication of Technology,” Organization Science, 
vol. 3, no. 3, pp. 383–397, Aug. 1992. 

[7] W. J. Orlikowski, “CASE Tools as Organizational Change: 
Investigating Incremental and Radical Changes in Systems 
Development,” MIS Quarterly, vol. 17, no. 3, pp. 309–340, 1993. 

[8] P. Clarke and R. V. O’Connor, “The situational factors that affect the 
software development process: Towards a comprehensive reference 
framework,” Information and Software Technology, vol. 54, no. 5, pp. 
433–447, 2012. 

 



Theory Building Attempts in Software Engineering
Per Runeson

Software Engineering Research Group
Lund University, Sweden

per.runeson@cs.lth.se

Abstract—The lack of theory in software engineering is ac-
knowledged and empirically shown. Still there exist attempts
to build theories in the literature. This position paper briefly
introduces the published works on theory building in software
engineering and outlines key characteristics of software engineer-
ing theories to be applied for future theory building and use.

Index Terms—software engineering; theory; empirical studies;

I. INTRODUCTION

Theory building is an activity aimed at abstracting and gen-
eralizing knowledge within a field of research. It is assumed
to improve communication among researchers and support
building new research upon existing knowledge. According
to Hannay et al. [6] “[a] theory provides explanations and
understanding in terms of basic concepts and underlying
mechanisms, which constitute an important counterpart to
knowledge of passing trends and their manifestation”.

Hannay et al. [6] conducted a systematic literature review
of software engineering experiments, 1993–2002. They found
40 theories in 23 articles, out of the 113 articles in the review.
However, only two of the theories were used in more than one
article – hence theories were not used for communication and
building upon existing research. The use of theory is hence
concluded being scarce in software engineering, in the ob-
served time period. Although there is no systematic literature
review conducted for the sub-sequent decade, we have not
seen any clear indications in the major software engineering
journals of substantial activity in the theory building and use.

This position paper is based on a chapter by Wohlin et al.
[12, p. 21-22]. We first summarize existing work on theory
building and the discuss where to go from there.

II. RELATED WORK

Endres and Rombach [4] identified a list of 50 findings
which they referred to as ‘laws’, which is a notion for a
description of a repeatable phenomenon in a natural sciences
context. They applied this notion to software engineering.
Many of the listed ‘laws’ are rather general management
theory than software engineering, for example, “it takes 5000
hours to turn a novice into an expert”. In their notion, theories
explain the ‘laws’, hypotheses propose a tentative explana-
tion for why the phenomenon behaves as observed, while
a conjecture is a guess about the phenomenon. Endres and
Rombach listed 25 hypotheses and 12 conjectures appearing
in the software engineering literature.

Zendler [13] took another approach, defining a “preliminary
software engineering theory”, composed of three fundamen-
tal hypotheses, six central hypotheses, and four elementary
hypotheses. He defined a hierarchical relation between the
hypotheses, the fundamental being the most abstract, and
elementary the most concrete ones, originating from out-
comes of experimental studies. An example theory according
to Zendler is “object-oriented programming techniques have
advantages against structured programming techniques”. He
surveys software engineering experiments, and structure his
findings in fundamental, central and elementary hypotheses.
However, the chain of evidence from the experiments to the
hypotheses are not clearly reported.

Gregor [5] described five general types of theory, which
may be adapted to the software engineering context according
to Hannay et al. [6]:

1) Analysis: Theories of this type describe the object of
study, and include, for example, taxonomies, classifica-
tions and ontologies.

2) Explanation: This type of theories explains something,
for example, why something happens.

3) Prediction: These theories aim at predicting what will
happen, for example, in terms of mathematical or proba-
bilistic models.

4) Explanation and prediction: These theories combine
types 2 and 3, and is typically what is denoted an
“empirically-based theory”.

5) Design and action: Theories that describe how to do
things, typically prescriptive in the form of design science
It is debated whether this category should be denoted
theory at all.

Sjøberg et al. [11] propose a framework for software engi-
neering theories, comprising of four main parts: (i) Constructs,
(ii) Propositions, (iii) Explanations, (iv) Scope, The constructs
are the entities in which the theory are expressed, and to which
the theory offers a description, explanation or prediction,
depending on the type of theory as defined above. Proposi-
tions are made up from proposed relationships between the
constructs. The explanations originate from logical reasoning
or empirical observations of the propositions, that is, the
relationship between the constructs. The scope of the theory
defines the circumstances, under which the theory is assumed
to be applicable. Sjøberg et al. [11] suggest the scope being
expressed in terms of four archetype classes: actor, technology,
activity and software system, see Table I.



TABLE I
FRAMEWORK FOR SOFTWARE ENGINEERING THEORIES, AS PROPOSED BY

SJØBERG ET AL. [11].

Archetype class Subclasses
Actor Individual, team, project, organisation or industry
Technology Process model, method, technique, tool or language
Activity Plan, create, modify or analyze (a software system)
Software system Software systems may be classified along many

dimensions, such as size, complexity, application
domain, business/scientific/student project or admin-
istrative/embedded/real time, etc.

The scope description is a kind of minimal ontology.
Ontology engineering is a field originating from knowledge
representation, and there are exist ambitious initiatives to
explore this, both to develop principles, methods, tools and
languages for ontologies in software engineering, e.g. Calero
et al. [1] as well as defining the ontologies themselves, e.g.
Jacobson et al. [7].

III. FUTURE OF SOFTWARE ENGINEERING THEORIES

Based on the attempts to develop and use theories in
software engineering, we derive three criteria that should apply
to any software engineering theory. A theory should, (i) be
empirically founded, (ii) have a defined scope, and (iii) be
relevant.

A theory should be empirically founded, based on a system-
atic collection of empirical evidence, e.g. through systematic
literature reviews [8]. Whether the evidence is based on
experiments [12] or case studies [10] is a secondary issue,
but the systematic collection [8], and synthesis [2] of the
evidence is crucial. The above cited theory proposals are based
on empirical studies [4, 13], but they fail with respect to the
systematic collection of empirical studies, as well as in an
transparent synthesis, leading to the theory.

A theory in software engineering should have a defined
scope. Firstly, the scope should be software engineering, and
not interfere with general management theory, as in one of the
early attempts to software engineering theory [4]. Secondly,
also within software engineering, the scope of the empiri-
cal findings may be very specific to the scope, as recently
illustrated by Dybå et al. [3], who observed, as an example,
that pair programming worked very differently for novices and
experienced programmers. Consequently, the scope of a theory
on pair programming must this into account.

Finally, a theory must be relevant for the practitioner.
Knowing that “object-oriented programming techniques have
advantages against structured programming techniques” [13]
does not help neither a practitioner nor a researcher, unless
it defines which advantages is has, and under which circum-
stances these advantages are observed.

There is a conflict between the ambitions of researchers
to provide rigorous answers and practitioners’ expectations of
short and clear answers. We cannot avoid this dilemma, but
have to face it and derive empirically founded, scoped and
relevant theories to communicate software engineering know-
ledge. Hopefully we will embrace Lewin’s famous quotation:
“There is nothing so practical as a good theory” [9, p. 169].

IV. ACKNOWLEDGMENT

Thanks to Professor Claes Wohlin for fruitful discussions
during the update work on the Experimentation book [12] and
feedback on this position paper.

REFERENCES

[1] C. Calero, F. Ruiz, and M. Piattini, editors. Ontolo-
gies for Software Engineering and Software Technology.
Springer Berlin Heidelberg, 2006.

[2] D. S. Cruzes, T. Dybå, P. Runeson, and M. Höst. Case
studies synthesis: Brief experience and challenges for the
future. In Proc. 5th Int. Symp. on Empirical Software
Engineering and Measurement, Banff, Canada, 2011.

[3] T. Dybå, D. I. K. Sjøberg, and D. S. Cruzes. What works
for whom, where, when, and why? On the role of context
in empirical software engineeringn the role of context in
empirical software engineering. In Proc. 6th Int. Symp.
on Empirical Software Engineering and Measurement,
pages 19–28, Lund, Sweden, 2012.

[4] A. Endres and H. D. Rombach. A Handbook of Software
and Systems Engineering – Empirical Observations,
Laws and Theories. Pearson Addison-Wesley, 2003.

[5] S. Gregor. The nature of theory in information systems.
MIS Quarterly, 30(3):491–506, 2006.

[6] J. E. Hannay, D. I. Sjøberg, and T. Dybå. A systematic re-
view of theory use in software engineering experiments.
IEEE Transactions on Software Engineering, 33(2):87–
107, 2007.

[7] I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and
S. Lidman. The Essence of Software Engineering –
Applying the SEMAT Kernel. Pearson Education, Inc.,
2012.

[8] B. A. Kitchenham and S. Charters. Guidelines for
performing systematic literature reviews in software en-
gineering (version 2.3). Technical Report Technical
Report EBSE-2007-01, Keele University and Durham
University, July 2007.

[9] K. Lewin. In D. Cartwright, editor, Field theory in social
science; selected theoretical papers. Harper & Row, New
York, 1951.

[10] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case
Study Research in Software Engineering – Guidelines
and Examples. Wiley, 2012.

[11] D. I. K. Sjøberg, T. Dybå, B. Anda, and J. E. Hannay.
Building theories in software engineering. In F. Shull,
J. Singer, and D. Sjøberg, editors, Guide to Advanced
Empirical Software Engineering. Springer-Verlag, Lon-
don, 2008.

[12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén. Experimentation in Software
Engineering. Springer, 2012.

[13] A. Zendler. A preliminary software engineering theory
as investigated by published experiments. Empirical
Software Engineering, 6:161–180, June 2001.



Knowledge Transformation in Software Development Processes 
 

Ilia Bider 
Department of Computer and Systems Sciences (DSV), Stockholm University (SU) 

IbisSoft AB 
Stockholm, Sweden 

ilia@{dsv.su.se | ibissoft.se} 
 
 

This position paper discusses the theoretical foundation of 
Software Engineering (SE) and argues that it should consist of 
two branches, the first branch deals with the generic properties 
of software products, the second one deals with the generic 
properties of SE processes. The paper argues that one of the 
important properties of the software development process is its 
model of knowledge transformation, and it suggests to adapt 
Nonaka's SECI model for investigating and comparing various 
software development methodologies. 

Software Engineering; knowledge transformation; SECI 
model; software development; agile 

I.  INTRODUCTION 

Software Engineering (SE) is an engineering discipline 
that deals with manufacturing of certain kind of products – 
software. Therefore, the SE theoretical foundation should 
concern both:  

• the properties of the product (software), and  
• the properties of the processes of product 

development, maintenance and retiring/disposing 
This means that the theoretical foundation of SE is naturally 
split into two main areas, which while being interconnected 
have different underlying concepts. 

As we deal with the theoretical foundation, the properties 
of both products, and processes should be considered on the 
high abstract level, so that the theory can be applied to any 
kind of software, and to any kind of methods of software 
development and maintenance.  

A typical example of product properties on the high 
abstract level is Software Quality, the subject addressed in 
numerous research works. Less popular subject that, in our 
view, is of great theoretical interest is multilayered 
architecture of software products. We believe that the 
theoretical foundation for creating a product-independent 
platform to address this subject can be found in the works of 
Michael Polanyi [1]. In it, he introduces the principle of 
boundary control according to which each layer has two sets 
of laws to obey. One set is the laws of its own layer, the 
other set is the laws of boundary control from the layer 
above which uses this layer for attending its own 
goals/properties. In addition, he states that the laws of the 
upper layer are not reducible to the laws of the lower one. 

In this paper, we, however, leave the properties of the 
software products outside the scope of our consideration and 
concentrate on theoretical foundation for the software 

development process. As this is an intellectual process which 
practically does not deal with the physical world, the 
transformation of knowledge in this process is of major 
importance. There are numerous methods of software 
development; therefore creating a theoretical foundation for 
knowledge transformation that is applicable to any of them is 
a challenging task. We propose to use ideas from Nonaka's 
SECI model [2] as a foundation for the theory of knowledge 
transformation in the software development process. In this 
short paper, we will give an outline of how ideas from SECI 
could be applied to software development. 

II. SECI MODEL 

SECI stays for Socialization – Externalization – 
Combination – Internalization, see Fig. 1, was developed in 
[2] to explain the ways how knowledge is created in an 
organization while being transformed from the tacit form to 
explicit and back.  

Figure 1.  SECI diagram, adapted from http://gramconsulting.com 

In the sections that follow, we demonstrate how the ideas 
from SECI can be applied to software development process. 

III.  KNOWLEDGE TRANSFORMATION IN THE TRADITIONAL 

SOFTWARE DEVELOPMENT 

Knowledge transformation during the traditional cycle of 
software development is represented in Fig 2. It starts with 
tacit knowledge on the needs that exists in the heads of the 
stakeholders. Then, it is transformed into explicit knowledge 
of requirements specifications which correspond to 



Externalization in Fig. 1. After that, this explicit knowledge 
is converted into another explicit form of design 
specifications. This transformation corresponds to 
Combination in Fig. 1, as the transformation is done with the 
help of software design principle of the appropriate SE 
domain. The next step, Coding, consists of transforming 
explicit knowledge of design specifications into the 
knowledge embedded into a software system. Though 
parallel to Internalization from Fig. 1, this step does not 
correspond to the latter exactly. We call this step 
Embedment.  The next step, Learning to use, consists of 
transforming the knowledge embedded in the software 
system into the tacit knowledge of its users that use the 
system in their practice. Though parallel to Socialization 
from Fig. 1, this step does not correspond to the latter 
exactly. We call this step Adoption.  

Figure 2.   ECEA - Knowledge transformation in the traditional software 
development 

The resulting model, which abbreviates to ECEA, can be 
useful for analyzing risks inherent to the traditional software 
development: 

1. Requirements does not catch the needs properly 
2. Requirements are not converted into a proper design 
3. Coding does not follow the design exactly 
4. The new software is not properly understood by its 

users, and it is rejected or used in the wrong fashion 
The risks above can be minimized by employing 

qualified requirements engineers, developers, programmers, 
and trainers. However, they can never be totally eliminated. 
The biggest risk of all, however, in today's highly dynamic 
environment is that: 

5. While a new system is under development, the 
problems/needs are continuing to evolve. As the 
result, a wrong/outdated system is delivered to the 
stakeholders. 

IV.  KNOWLEDGE TRANSFORMATION IN THE AGILE 

SOFTWARE DEVELOPMENT 

One way to minimize the risks of the traditional software 
development is to use the agile principles [3]. Knowledge 
transformation in the agile development in the idealized form 
is represented in Fig. 3. In it, the Design phase is removed, 

and one big cycle is substituted by many small ones. This 
corresponds to the main idea of agile development to avoid, 
as much as possible, transforming knowledge into explicit 
form. Minimum requirements and design documents, e.g., 
notes, emails, or black- whiteboard diagrams, however, still 
exist, but they do not represent legally binding requirements 
of the traditional approach. 

Figure 3.  Knowledge transformation inthe the agile softwre development 

As we see from Fig. 3, the nature of the requirements 
engineering phase is also changed. It consists in transferring 
tacit knowledge of problems/needs from the stakeholders to 
the design team, and thus corresponds to Socialization in Fig. 
1. As the result we get the repeating cycle of Socialization-
Embedment- Adoption – SEA model. 

V. CONCLUSION 

As we discussed in Section I, the theoretical foundation 
of SE should have two branches, one concerns the generic 
properties of software, the other concerns the properties of 
SE processes. As there are multiple different methods of 
developing software, the theory of the second brunch should 
be able to model different sides of these methodologies, so 
that they could be compared, and the one that suits best a 
given context of development could be be chosen.  

We believe that SE theory should include an approach to 
describing and modeling knowledge transformation in 
software development processes. As we have shown in 
Section II-IV, SECI model from [2] could be adapted for this 
kind of modeling. 

The ideas presented in this position paper are based on 
the analysis of the authors own practice of developing 
software systems (Agile as well as not agile) and introducing 
them into organizational practice, see for example [5]. 

REFERENCES 

 
[1] M.S. Polanyi, Knowing and Being. Chicago, University of Chicago 

Press, 1969. 

[2] I. Nonaka, "A dynamic theory of organizational knowledge creation," 
Organ. Sci., 5(1),  1994, pp. 14–37. 

[3] Agile manifesto. http://agilemanifesto.org/. 

[4] T. Andersson, I. Bider and R. Svensson R. "Aligning people to 
business processes experience report", Software Process 
Improvement and Practice, 10(4), 2005,  pp. 403. 

Learning
 to use

in own practice 

Requirements
engineering

Coding Design

Tacit knowledgeTacit knowledge

Explicit knowledge

E
xp

lic
it 

kn
ow

le
dg

e

Problems/needs

Design specifications

R
eq

ui
re

m
en

ts
 s

pe
ci

fic
at

io
ns

E
m

be
dd

ed
 k

no
w

le
dg

e

S
of

tw
ar

e 
sy

st
em

E
xp

lic
it 

kn
ow

le
dg

e

Explicit knowledge

E
m

be
dd

ed
 k

no
w

le
dg

e

Combination

Externalization

Embedment

Adoption

Solutions

 

Und
er

sta
nd

ing
 o

f p
ro

ble
m

s/n
ee

ds
 

Tacit knowledgeTacit knowledge
Problems/needs

E
m

be
dd

ed
 k

no
w

le
dg

e

Ta
cit

 kn
ow

led
geCoding

Learning
 to use

in own practice

Requirements
discovery

S
of

tw
ar

e 
sy

st
em

Solutions

Embedment

Adoption
Ta

cit
 kn

ow
led

ge

E
m

be
dd

ed
 k

no
w

le
dg

e

Socia
liz

at
io

n



Requirements on General Theories of Software Engineering  
An Unusually Dense Position Paper  

 

Pontus Johnson 
KTH Royal Institute of Technology 

Stockholm, Sweden 
e-mail: pontus@ics.kth.se 

Iaakov Exman 
The Jerusalem College of Engineering 

Jerusalem, Israel 
e-mail: iaakov@jce.ac.il

 
 

Abstract— In this paper, we propose a set of quality criteria of 
general theories of software engineering: The quality of a 
general theory of software engineering depends on (i) the 
universality and precision with which it predicts the influence 
of the software decision makers’ actions on the software 
development goals, (ii) its degree of corroboration, (iii) its 
degree of formalization, (iv) the unambiguousness of its 
measurement procedures. The argument for these quality 
criteria is based on (a) the oft-quoted adage by Kurt Lewin, 
"There is nothing so practical as a good theory", (b) Karl 
Popper’s The Logic of Scientific Discovery, and (c) the Essence 
of the SEMAT Initiative. 

I. INTRODUCTION 

Quality criteria for scientific theories have been 
extensively examined within the field of philosophy of 
science  [1]. In this paper, we propose a slightly modified set 
of criteria suitable for general theories of software 
engineering. The purpose of the proposal is to guide the 
search for a general theory of software engineering, as well 
as to contribute to an increased awareness of the importance 
in practice of software engineering theories. 

II. PREDICTING DECISIONS’  EFFECTS ON GOALS 

Kurt Lewin famously proposed that "There is nothing so 
practical as a good theory"  [2]. In the context of software 
engineering, the word “practical” arguably means that the 
theory is of benefit to the engineering effort, i.e. that it 
somehow aids the practitioner attaining her design goals. 
How then can a theory provide such aid? A theory can itself 
not perform actions in the real world. Its only manner of 
influencing the world is through the actions of decision 
makers; a person’s behavior is contingent on the theory she 
subscribes to. The benefits of theory thus must come through 
its decision-guiding capacity. 

Given that decision-makers strive for certain goals with a 
limited set of means at their disposal, their problem is to 
determine which of the available actions achieve what 
results; which knobs influence what gauges. This is a 
problem that a theory can solve; a theory can be used to 
predict the effects of actions on goals. This leads to a first 
version of quality criteria (i): The quality of a general theory 
of software engineering depends on the extent to which it 
predicts the influence of the software decision makers’ 
actions on the software development goals. 

III.  UNIVERSALITY AND PRECISION 

In a subsequent section, the software decision makers’ 
actions and goals are elaborated on. Another critical part of 
the formulation of the first criteria is “the extent to which 
[the theory] predicts […]”. The iconic philosopher of science 
Karl Popper  [3] employs the term empirical content to 
denote that “extent”. According to Popper, empirical content 
is increased either by increasing the universality of the 
theory or by increasing its precision. To explain these 
concepts, Popper exemplifies with the following four 
theories:  

p: All heavenly bodies which move in closed orbits move 
in circles: or more briefly: All orbits of heavenly bodies are 
circles. 

q: All orbits of planets are circles. 
r: All orbits of heavenly bodies are ellipses. 
s: All orbits of planets are ellipses. 
Moving from p to q, the degree of universality decreases; 

and q says less than p because the orbits of planets form a 
proper subclass of the orbits of heavenly bodies. Moving 
from p to r, the degree of precision decreases: circles are a 
proper subclass of ellipses. Corresponding remarks apply to 
the other moves. To a higher degree of universality 
or precision corresponds a greater empirical content. In 
summary, higher universality means that more things can be 
predicted, and higher precision means that those predictions 
become more exact. 

Universality and precision are implied in quality criteria 
(i). A theory that only predicts the effect of one kind of 
action, e.g. choice of development method, on one kind of 
goal, e.g. development effort, is less universal than a theory 
that also can predict the effect on software quality. A theory 
that only vaguely predicts that a big application will be more 
costly to develop than a small one is less precise than a 
theory that predicts the cost in dollars and cents based on 
function points. A reformulation of criteria (i) is thus: The 
quality of a general theory of software engineering depends 
on the universality and precision with which it predicts the 
influence of the software decision makers’ actions on the 
software development goals. 

IV. DEGREE OF CORROBORATION 

According to Popper, “Theories are not verifiable, but 
they can be ‘corroborated’. The attempt has often been made 



to describe theories as being neither true nor false, but 
instead more or less probable. […] Instead of discussing the 
‘probability’ of a hypothesis we should try to assess what 
tests, what trials, it has withstood; that is, we should try 
to assess how far it has been able to prove its fitness to 
survive by standing up to tests. In brief, we should try to 
assess how far it has been ‘corroborated’.”  

Software engineering theories do not differ from other 
theories in this respect; corroboration is a quality criteria. A 
theory that has passed many difficult empirical trials is better 
than one that has not. This leads to quality criteria (ii): The 
quality of a general theory of software engineering depends 
on its degree of corroboration. 

V. DEGREE OF FORMALIZATION 

Popper continues: ”The requirement of consistency […] 
can be regarded as the first of the requirements to be satisfied 
by every theoretical system, be it empirical or non-empirical. 
In order to show the fundamental importance of this 
requirement it is not enough to mention the obvious fact that 
a self-contradictory system must be rejected because it is 
‘false’. […] But the importance of the requirement of 
consistency will be appreciated if one realizes that a self-
contradictory system is uninformative. It is so because any 
conclusion we please can be derived from it. Thus no 
statement is singled out, either as incompatible or as 
derivable, since all are derivable.” 

The best way to avoid inconsistency is by formalization. 
A sufficiently formalized system can be subjected to 
automated methods to detect inconsistencies. But benefits of 
formalization appear before a system has been 
mathematically formalized. A theory presented in a 
structured form is often less ambiguous than a theory 
presented casually. 

This leads to quality criteria (iii): The quality of a general 
theory of software engineering depends on its degree of 
formalization. 

VI. AMBIGUITY OF MEASUREMENT PROCEDURES 

As stated in the second section, a precise theory is 
preferable to an imprecise theory. Imprecision can appear in 
two relations. The first relation, discussed in Section II, is 
between the constructs of the theory. For instance, the 
proposition “System X is larger than System Y” is less 
precise than “System X is twice as large as System Y”.  

The second relation that can cause imprecision is 
between the constructs of the theory on the one hand and the 
real world on the other. In other words, the theory’s 
measurement procedures may be imprecise, or stated 
differently, the theory’s definitions may refer to the real 
world in imprecise ways. A theory that represents system 
response time on an ordinal scale of “high”, “medium” and 
“low” is less precise than a theory that represents response 
time in seconds. 

This leads to quality criteria (iv): The quality of a general 
theory of software engineering depends on the ambiguity of 
its measurement procedures. 

VII.  SOFTWARE ENGINEERING ACTIONS AND GOALS 

Having formulated the four quality criteria, we may ask: 
-Which specific features distinguish a software 

engineering theory from other theories? 
To this end we elaborate additionally on the first quality 

criteria by detailing the actions and goals of the software 
decision maker. We believe that it is fruitful to relate these to 
the Essence developed by the SEMAT initiative  [4]. In the 
Essence, a key concept is the Alphas. Alphas are 
“representations of the essential things to work with”  [4]. 
Examples of alphas are Software System, Requirements, 
Work, Team, and Way of working. We propose that these 
alphas constitute the base for the actions of the software 
decision maker in quality criteria (i). For instance, an action 
might be to change the requirements, or to modify the way of 
working by replacing one practice with another.  

Considering the software development goals, SEMAT 
describes these as better software, faster and with happier 
customers. Thus, criteria (i) can be further elaborated to the 
following: The quality of a general theory of software 
engineering depends on the universality and precision with 
which it predicts how actions on the SEMAT alphas lead to 
(or away from) better software faster and with happier 
customers. 

VIII.  SUMMARY  

We have presented four quality criteria for general 
theories of software engineering that we believe should guide 
theory development within the field: (i) the universality and 
precision with which it predicts the influence of the software 
decision makers’ actions on the software development 
goals, (ii) its degree of corroboration, (iii) its degree of 
formalization, (iv) the unambiguousness of its measurement 
procedures. 

We believe that good SE theories – obeying the above 
quality criteria – will not appear like fashionable meteors just 
to fall in disregard a short time after. Each good theory will 
be tested in the laboratory and in the field against real 
software systems and endeavors – its predictions gradually 
gaining confidence by corroboration. This will impart 
relatively long-term resilience, until a better theory appears 
and replaces it, like in any other field of science and 
engineering.  

REFERENCES 
[1] P. Godfrey-Smith, Theory and reality: An introduction to the 

philosophy of science, University of Chicago Press, 2003. 

[2] K. Lewin, Field theory in social science; selected theoretical papers. 
D. Cartwright (ed.). Harper & Row. 1951. 

[3] K. Popper, The Logic of Scientific Discovery, Hutchinson & Co, 
1959. 

[4] I. Jacobson et al., The Essence of Software Engineering: Applying the 
SEMAT Kernel, Addison-Wesley Professional, 2013. 

 



States and Transformations for Software
Engineering Theory

(Position Paper)

Hannu-Matti Järvinen and Mikko Tiusanen
Department of Software Systems

Tampere University of Technology
P.O. Box 553 (Korkeakoulunkatu 1)

FI–33101 Tampere, FINLAND
Email: {hannu-matti.jarvinen,mikko.tiusanen}@tut.fi

Abstract—Our position is that an engineering discipline needs
a theory that can be used to predict the properties of its artefacts.
If one follows the example of Maxwell’s equations, software
engineering needs to be based on a theory of computation, like
electrical engineering is based on a theory of electromagnetism.
Such a theory of computation is likely to fundamentally be about
states and state transformations.

Index Terms—Software engineering, Theory, State, Transition.

I. INTRODUCTION

Writing about what is the theory of one’s subject domain is
an exercise in finding the limits of one’s thinking. There need
to be limits, since otherwise the subject is all-encompassing:
without limits nothing is excluded. Nevertheless, limits on
thinking also limit solutions that get considered.

Maxwell’s equations describe limitations on the values of
measurable quantities of electromagnetic phenomena. They are
not exact—at limit, since they ignore quantization—but bulk
descriptions. They do, however, allow a limiting process of
more accurate approximations until the quantization effects
break this down. As such they are eminently applicable to
engineering, as witnessed by their success.

Engineering is the art of constructing artefacts to provide
services to society. Specifically, it is an art, not a science!
A science would be more concerned about understanding its
underlying phenomena.

Engineering does not need understanding as much as it
needs an ability to make predictions, hopefully quantifiably
reliable. Engineering has used many phenomena long time
before the physicists, chemists, or others have come up with
explanations of how these come about. For the engineer being
able to achieve an effect reasonably reliably is more important
than why the effect comes about. (The same is true of the
magician: it is not without cause that Thomas Alva Edison
was called the ”wizard of Menlo Park”.)

Software is unique in that its construction is to verbalize it
in a form that spawns a behaviour when interpreted. One of the
subliminal attractions of writing software is this—here rather
trivial—godlike ability to say ”Let there be light” and make
light appear. Before software, you needed to at least connect
together components to make something, say, a radio receiver

by soldering. With software, you can make a radio by writing
a program to process radio frequency samples and to procuce
sound—well, some can. . . Small change in the program can
can also radically alter its behaviour, making programs chaotic
systems. Moreover, a program can spawn a behaviour that
can be partially parameterized by the conditions under which
it is interpreted, only partially, since it can display also at
least seemingly random traits. All such behaviours should be
predictable, however. So, constructing software is quick and
easy, but getting it predictably to behave as is desired can be
even harder than with other branches of engineering.

II. DISCUSSION

We shall briefly treat each of the questions posed by the
call-for-pariticipation, in order:

What are the objectives of a theory of software engineer-
ing: These are the same as for any engineering discipline: to
be able to predict the behaviour of its artefacts.

The artefacts of software engineering are computations or
descriptions of such. Computations are processes that trans-
form state. Therefore, processes that produce computations
are also such artefacts (computations), as are processes that
produce such processes, recursively, ad infinitum, along with
descriptions of these. Obviously, the quality of the prediction
may deteriorate in each recursion due to approximations made.

Another obvious observation is that the above, if acceptable
as a definition of computation, covers many physical, chem-
ical, psychological, and other processes, continuous as well
as discrete. Is this of concequence, however? The theory can
be restricted to cover only those aspects of current interest.
Restricting the domain too much, however, makes for rigidity:
Perhaps quantum computations are to be realized by quantum
mechanical processes? Would these then fall outside the scope
of software engineering simply because the definition of soft-
ware engineering does not allow for such processes? Some of
the rather commonly accepted parts of the theory of software
engineering are indeed rather close to social psychology, say,
Conway’s law.

How can a theory be of use in practice: In ways,
exemplified by any theory used by any engineering discipline,
to predict the behaviour of its artefacts.



What is a useful definition of theory: Logically, a theory
is a collection of true statements about a domain of discourse.
Some statements will be statistical or stochastic ones. Deter-
mination of the truth of a statement is not a part of logic which
only assumes that this can be done if necessary: it is simpler
for some domains of discourse. Indeed, it may be impossible,
re Gödel and Turing, e.g.

The true statements will by necessity be conditional in that
they will need to describe the conditions under which they
hold.They will also name concepts of relevance. What these
concepts would be for a theory of software engineering, is
unclear to us. What the practitioner will use will be something
that is based on such true statements, most likely quite distinct
in appearance from these.

What questions should a theory of software engineering
address: This needs to be a theory of computations, rather,
as engineering will need to use it to predict the properties
of its artefacts. Specifically, the construction of software in a
software project is a computation by the above definition (it
is a process to produce a relevant artefact), the predictability
of which and its results is the urgent problem for software
engineering. The question to be answered is how to provide
predictability to a level at least somehow comparable to other
engineering disciplines.

How foundational/universal should it be: As fundamental
as is needed. It is rather fundamental, if the above definition
of a computation is accepted.

What should the main concepts of the theory be: Our
suggestion is to use local state and local transformation of
state. These produce a computation, a flow of control poten-
tially distributed and concurrent. This age-old dichotomy of
states and state transformations characterize processes across
scientific disciplines, e.g., [1]. These can also be used to
describe also human behaviour to a degree at least. SEMAT
uses these concepts when talking about alphas.

This is only a partial answer, obviously: States and tran-
sitions are very low-level concepts. If following the lead of
Maxwell’s equations—not necessary but perhaps plausible—
the issue would be, what are the measurable bulk quantities
that would have to be related by the theory, those that are
relevant for increased predictability of sofware projects. If
software projects are computations, trajectories of interest,
what, by analogy to Maxwell’s equations, are the concepts
corresponding to fields (or potential functions) that affect these
trajectories? These are not clear to us.

It is most likely not wise to restrict these concepts even
to realisable states, transformations, and computations, since
unrealisable ones may be relevant for the theory, although less
likely to the practice. Obviously, it is definitely not wise to
restrict to serial computations, since these only cover a portion
of the interesting ones: even a software project tends to have
concurrent parts even if actually being executed serially by
one person!

Should a theory of software engineering be expressed
formally: Indeed, it should. If it can be expressed with
the conciseness of Maxwell’s equations, so much the better.
Whether this can be done is not clear.

If formalized, what is a suitable language for a theory
of software engineering: Mathematics and logic are the best
language that we as human beings have invented in order to
describe and then predict the behaviour of processes, among
other things. They are obviously incomplete: to quote Eugene
O’Neill, ”A poor thing but mine own.” [2]

It is not clear if the mathematics needed to achieve such
a formalization exists or even can be created, although the
human mind has been in the past been able to achieve similar
breakthroughs when put under the pressure of necessity.

III. CONCLUSION

As is obvious, there are significant bodies of knowledge
that can be drawn upon that have explored related issues. The
ones closest to our current interests are action systems, as
exemplified by Unity (of Chandy and Misra [3]) and DisCo
(of Kurki-Suonio [5]), Temporal Logic of Actions (TLA,
of Lamport [4]), and Petri nets [1]. The weight of a body
of knowledge is, however, of little consequence unless it is
relevant to increasing the predictability.

REFERENCES

[1] C.A. Petri, State-transition Structures in Physics and in Computation,
Int. J. of Theor. Physics 21(1982)12, 979–992.

[2] E.G. O’Neill, Long Day’s Journey Into Night (First edition). New Haven
1956. ISBN 250174075.

[3] K.M. Chandy, J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley 1988. ISBN 0201058669.

[4] L. Lamport, Temporal Logic of Actions. Research report 71, Digital
systems research center, 1991.

[5] R. Kurki-Suonio, A Practical Theory of Reactive System, Springer Berlin
Heidelberg New York, 2005. ISBN 3-540-23343-3.



Ontology-Based Modeling of the Software Quality Assurance Knowledge

Nada Bajnaid
King Abdulaziz University, SA

London Metropolitan University
United Kingdom

nab0378@londonmet.ac.uk

Algirdas Pakštas, SM IEEE
London Metropolitan

University
United Kingdom

a.pakstas@londonmet.ac.uk

Shahram Salekzamankhani
London Metropolitan University

United Kingdom
s.salekzamankhani@londonmet.ac.uk

Abstract

Software is a key element of the modern computing
systems (from mobile phones to supercomputers) and
there is a need for high standards in educating
people who are involved in its development. It
becomes especially critical when there are special
requirements for high quality software. This paper
presents an ontological model to describe and define
the Software Quality Assurance SQA knowledge
area. International standards (SWEBOK, IEEE, and
ISO) were the main sources of the terminology and
semantic relations of the developed SQA model. The
Application-Based ontology evaluation is used to
measure practical aspects of ontology deployment.
An ontology-based e-learning prototype was
designed and implemented to guide students and
practitioners about a process of development of the
SQA compliant software.

1. Introduction

In software engineering, people with different
necessities and viewpoints need to communicate and
share knowledge during all the stages of the software
life cycle. Information sharing helps to prevent
inconsistency among teams that are geographically
dispersed and are participated in the development
process.

Using ontology to model the SE knowledge shorts
the development time, improves productivity,
decreases cost, and increases product quality.
Ontologies provide better understanding of the
required changes and the system to be maintained
[Calero, 2006, p. 57-62; Mendes, 2004; Wille,
2004]. Software engineering domain ontologies are
very useful in developing high quality, reusable
software by providing an unambiguous terminology
that can be shared through the development
processes. Ontologies also help in eliminating
ambiguity, increasing consistency and integrating

distinct user viewpoints [Uschold, 1996; Zhao,
2009].

In addition, software engineering ontologies can
be used to support the translation between different
languages when different users/agents need to
exchange data. Designers with different backgrounds
and viewpoints working on the same project can be
helped by ontologies in the requirement specification
process by offering a declarative specification of the
system, its components and the relationship between
the components [Calero, 2006].

2. Building the SQA Ontology

There was an effort by different bodies to develop
Software Engineering standards followed by the
forming of the ISO/IEC Joint Technical Committee 1
(JTC1) workgroup in order to guarantee consistency
and coherency among standards. The IEEE
Computer Society and the ISOJTC1-SC7 agreed to
harmonize terminology among their standards.
However, there is still no single standard which
embraces the whole SQA knowledge. Because of
that, there are various vocabularies to describe the
SQA knowledge in learning context including
textbooks. In addition, Software Engineering
teachers have different backgrounds, use different
languages and/or jargons which motivate additional
research related to SQA teaching.

Our research aims to investigate, design and
evaluate a model of the SQA knowledge area that
would facilitate automated retrieval of the domain
knowledge using ontologies. After a thorough review
of the software engineering field and software quality
knowledge area in particular, ontologies
(development methodologies, tools, and languages),
and previous work in literature of developed
ontologies in the field of software engineering and
technologies, we built a software quality ontology
model that represents the main software quality
concepts and relations among them. The primary
source of the developed SQA ontology is the
SWEBOK guide (2004), in addition to that, ISO and



IEEE standards (ISO 9126, IEEE 12207, IEEE
610.12, IEEE 00100, SWEBOK 2004, PMBOK
2008) were used and from them relevant terminology
was extracted with help of domain specialists. The
developed ontology was implemented using the Web
Ontology Language OWL. Protégé was selected as
the ontology editing and knowledge acquisition tool
[Bajnaid et al., 2011].

3. Evaluating the Developed SQA
Ontology

Higher quality ontologies can be easier reused and
shared with confidence among applications and
domains. Additionally in case of re-use, the ontology
may help to decrease maintenance costs [Vrandečić,
2010]. Thus, ontology evaluation is an important step
followed its development which includes assessing
the usefulness of the ontology for the purpose it was
built for and evaluating the quality of the ontology
(its conceptual coverage, clearness, etc.). Evaluating
ontology is not an evidence of the absence of
problems, but it will make its use safer.

Our ontology evaluation is limited to the criteria
identified by Gómez-Pérez [2001] such as:
completeness, consistency, conciseness, and
expandability.
Completeness: all knowledge that is expected to be
in the ontology is either explicitly stated in it or can
be inferred.
Consistency: refers to weather a contradictory
knowledge can be inferred from a valid input
definition.
Conciseness: if the ontology is free from any
unnecessary, useless, or redundant definitions.
Expandability: refers to the ability to add new
definitions without altering the already stated
semantic.

Different ontology evaluation approaches have
been considered in literature depending on the
purpose of the evaluation and the type of the
ontology being evaluated. Brank and colleagues
[2005] classify ontology evaluation approaches as
following:
1. Those based on comparing the ontology to a

“golden standard” which might be an ontology
itself;

2. Those based on using the ontology in an
application and evaluating the results or
application-based ontology evaluation;

3. Those involving comparison with a source of
data (e.g. a collection of documents) about the
domain to be modeled by the ontology;

4. Those where evaluation is done by humans who
try to assess how well the ontology meets a set of
predefined criteria, standards, requirements, etc.

The first approach is not applicable due to the
lack of a “golden standard” or upper Software
Engineering ontology.

The second approach has been adopted and an
application-based ontology evaluation was conducted
using a prototype system which was implemented for
this purpose [Bajnaid et al., 2012].

The third approach was held during development
of the ontology when the evolving conceptual model
[Bajnaid et al., 2012] was compared to the sources of
knowledge.

The fourth approach included usage of the
ontology assessment questionnaire which was
distributed among some Specialist Groups of well-
known communities to validate the quality of the
ontology.

4. Conclusion

A well-defined, complete and disciplined SQA
process can be helpful to improve communication
and collaboration among project participants and can
serve as a standard when there is a disagreement. To
our knowledge, there is no software quality ontology
available for teaching and learning purposes. Having
the opportunity to build dynamic ontology reasoning
rules will provide a unique insight in teaching
software quality in an e-learning environment. The
quality of the ontology was validated against several
criteria. The consistency and conciseness of the
developed ontology were automatically validated
during the implementation process using the Protégé
consistency checker tool. A proof of concept e-
learning prototype was built to evaluate the SQA
ontology deployment. [Bajnaid et al., 2012].

5. References

[1] Calero, C., Ruiz, F. and Piattini, M., 2006. Ontolgies in
Software Engineering and Software Technology, Springer
[2] Mendes, O., and Abran, A., 2004. Software
Engineering Ontology: A Development Methodology,
Position Paper, Metrics News 9:1, August, pp. 68-76.
[3] Wille, C., Dumke R., Abran A. and Desharnais J.M.,
2004. E-learning Infrastructure for Software Engineering
Educations: Steps on Ontology Modeling for SWEBOK,
Proceedings of the IASTED International Conference on
Software Engineering, 2004, pp. 520-525.
[4] Uschold, M., and Gruninger, M., 1996. Ontologies:
Principles, Methods, and Applications, Knowledge
Engineering Review, Volume 11 number 2, June 1996.
[5] Zhao Yajing, Dong Jing, Peng Tu, 2009. Ontology
Classification for Semantic-Web-Based Software
Engineering, IEEE Transactions on Services Computing,
v.2 n.4(2009), 303-317.
[6] SWEBOK, 2004. Guide to the Software Engineering
Body of Knowledge, ed. Bourque P., and Dupuis R. IEEE
Computer Society Press, 2004. Available at:
http://www.swebok.org



[7] Bajnaid N., Benlamri R. and Cogan B., 2011. Context-
Aware SQA E-learning System, Proc. of the Sixth
International Conference on Digital Information
Management ICDIM 2011, Melbourne, Australia, 26-28
Sept., 2011.
[8] Vrandečić, D., 2010. Ontology Evaluation, PhD Thesis
[9] Gómez-Pérez A (2001) Evaluation of Ontologies.
International Journal of Intelligent Systems 16(3), p.391–
409
[10] Brank, J., Grobelnik, M. and Mladenic, D. 2005 A
survey of ontology evaluation techniques. In Proceedings
of the Conference on Data Mining and Data Warehouses
(SiKDD 2005), Ljubljana, Slovenia.
[11] Bajnaid N., Benlamri R. and Cogan B. (2012), “An
SQA e-Learning System for Agile Software Development”,
Proc. of the Fourth International Conference on Networked
Digital Technologies, Dubai, UAE, April 24-26, 2012.
Communications in Computer and Information
Science(CCIS 7899) Series of Springer LNCS – in press.



On the dimensions of software documents –
An idea for framing the software engineering process

E. Kindler, H. Baumeister, A. Haxthausen, and J. Kiniry
DTU Informatics

DK-2800 Lyngby, Denmark
{eki,hub,ah,jkin}@imm.dtu.dk

Keywords-software engineering documents; software devel-
opment process; software engineering theory;

I. INTRODUCTION

In a call for action [1], Jacobson, Meyer, and Soley,
together with many other signatories, encourage the software
engineering discipline to “re-found” software engineering
based on a “solid theory” [2]: The SEMAT initiative. In
a soon to be published book [3], the “The Essence of
Software Engineering” is presented by “Applying the SE-
MAT Kernel”. This SEMAT kernel identifies the essential
concepts or “things” that need to be kept track of in order to
successfully develop software, the so-called alphas (α). This
way, SEMAT conceptualizes the “things” going on in the
software development process, independently from a specific
software development approach, methodology or philosophy.
The alphas allow us to talk about what things need to done
and monitored, discussed and taught in software engineering
independently from how they are done in a specific develop-
ment approach. This agnostics when identifying the alphas
is one of the strength of SEMAT’s conceptualisation.

Surprisingly enough, the artefacts that are used for soft-
ware development seem not to be of primary concern in
SEMAT: documents describing the software in some form
or the other. In this paper, we understand software documents
in the broadest possible sense, which would subsume single
paragraphs with the product objective, product definitions,
systems specifications, source code, binary code, tests (exe-
cutable and not), all kinds of UML and non-UML diagrams,
formal models, user stories, GUI definitions, and handbooks;
in short, any written or graphical artefact we encounter
during the software development process (be it on paper
or in electronic form).

We can only guess as to why software documents do
not play a more prominent role in the SEMAT kernel;
one reason might be that discussing any of these software
documents specifically, would introduce a bias towards some
specific development approaches – SEMAT would not be
agnostic anymore. When discussing specific documents –
and in particular when defining specific structures and how
they should be written – we might introduce a bias towards

how things should be done, and this way towards a specific
software development philosophy.

Still, we believe that software documents are way too
important not to be a primary concept of a theory of software
engineering. In this paper, we will have a first glance at
the space of software documents and their characteristics
– independently from a specific software development phi-
losophy. In order to understand this space, we identify
some first dimensions that span the space of all software
documents with their different characteristics; we give a
glimpse of how these dimensions could be used to better
understand what should be done during the software devel-
opment process, which, in particular, would help teaching
software engineering. Moreover, the way and order in which
different software development approaches create documents
with their specific characteristics in this space – i. e. the
project’s software document trajectory in this space – might
characterise specific software development approaches and
provide insights into the way they work.

In this paper, we will discuss some ideas of how this could
look like. This paper, however, does not provide the answer
yet – we do not even dare to fix the most essential dimen-
sions yet. The dimensions and examples discussed in this
paper, should demonstrate that it is worthwhile investigating
the dimensions, and that, eventually, these dimensions could
be an ingredient to the theory of software engineering.

II. DIMENSIONS AND THEIR PURPOSE

Next, we discuss some first candidates for some of the
dimensions of software documents, and how they reflect on
the development process.

A. Some dimensions

Figure 1 depicts three dimensions, which – from our
teaching experience – seem to be important for software
development. For lack of a better name1, we call the first
one the “What-How” dimension; the idea of this dimension
is that in the early phases it should be defined “what” the
final software product should do, in contrast to “how” this

1A Sofa Seminar discussion of the Software Engineering Section of DTU
Informatics resulted in a proposal to call this dimension the Abbott-Costello
dimension after the famous “Who’s on first?” performance from 1945.



what how 

rough 

detailed 

formal 

informal 

Figure 1. Three dimensions of software documents

is finally technically realized and implemented. The second
dimension is level of detail, which runs from “rough” to “de-
tailed” – we will see later, that the level of detail, probably,
can be decomposed into two independent dimensions. The
third and, for now, last dimension is formality, which runs
from “informal” to “formal”. Also for formality, it appears
that it can be decomposed – at least its is entangled with
another dimension, executability (see Sect. II-C).

Of course, there are more dimensions; which ones are the
most relevant and helpful ones, is still an open issue. For
getting a grip on the issue, we will start some form of wiki
or open document, where all interested people could con-
tribute their perspective. A reasonable schema for defining a
dimension could consist of a name, an (informal) definition
or characterisation, and a “litmus test” for identifying on
which side of a dimension a software document would be
located; in some cases, there could be even some metrics
for measuring documents with respect to the dimension;
most importantly, there should be a set of examples that
show which kind of document would be at which end of
the resp. dimension. For example, the “product objective”,
which typically is a single sentence or paragraph of what
should be achieved with the product, would be about the
“what”, “informal”, and “rough”; by contrast, the handbook
would be about the “what”, more or less “formal”, but
“detailed”. The result of an object oriented analysis would
still be about the “what”, would be more “formal”, and
more “detailed”. The code – remember that we also consider
code as a document – would be about the “how”, would be
“formal”, and “detailed”. It is a worthwhile exercise to place
more kinds of software documents in this space.

B. Dimensions and development process

Now, let us have a brief look at how software engineers
would navigate through the space of software documents.
Figure 2 shows three cases. The left one, is where there
might be a rough product idea or objective initially, and an
implementation finally. The middle once shows one iteration
of agile development: it goes from an initial user story,
via an (automated) test, to the final impelementation. The
right one, shows a more waterfall-like process, which more
systematically covers all stages. Being agnostic about the
process, we do not prefer one over the other – it certainly
depends on the kind and size of software what is better.
Anyway, Fig. 2 suggest that the trajectory of a process in
the space of software documents tells something about the

what how 

rough 

detailed 

formal 

informal 

what how 

rough 

detailed 

formal 

informal 

what how 

rough 

detailed 

formal 

informal 

Figure 2. Process trajectories

underlying process – for the left one, there almost certainly
is no handbook, since this would imply that the “detailed”
“what” area is covered.

As mentioned, the middle trajectory shows one iteration
of a agile development process only. When going through
different iterations the collected user stories and implemen-
tation would cover more and more features of the final
software. This observation, actually gives rise to another
dimension: coverage, which is not yet shown in Fig. 2.

C. More dimensions and entanglement

The coverage mentioned above seems to introduce another
dimension of software documents (or in the case of agile a
collection of documents). Somehow this is related to the
level of detail – just organized according to the product’s
features or functions. The level of detail seems to have two
independent components: coverage and abstraction, which
however needs more investigation.

Likewise, there are other dimensions like non-
executable/executable, which, however, is entangled
with (i. e. is not full independent of) formality, since
executability implies some form of formality. And there
are more dimensions, that should be discussed before
ultimately deciding on the dimensions of software
documents: “textual/graphical”, “imprecise/precise”, etc.

III. CONCLUSION

In this paper, we gave a glimpse of the dimensions of
software documents – barely enough to see that it might be a
worthwhile endeavour to better understand these dimensions,
which then could be a part of software engineering theory.
In this endeavour, existing characterisations of kinds of
software documents such as the one discussed by Bjørner
[4] should be taken into account.

REFERENCES

[1] I. Jacobsen, B. Meyer, and R. Soley, “The SEMAT ini-
tiative: A call for action,” Dr. Dobb’s Journal, Dec. 2009,
http://www.ddj.com/architect/222001342.

[2] I. Jacobsen and I. Spence, “Why we need a theory
for software engineering,” Dr. Dobb’s Journal, Oct. 2009,
http://www.ddj.com/architect/220300840.

[3] I. Jacobsen, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lid-
man, The Essence of Software Engineering. Addison Wesley,
2013, pre-publication draft.

[4] D. Bjørner, Software Engineering 1. Springer, 2006.



Linear Software Models  
Extended Abstract 

 

Iaakov Exman 
Software Engineering Department 

The Jerusalem College of Engineering 
Jerusalem, Israel 

e-mail: iaakov@jce.ac.il

 
 

Abstract— Modularity is essential for automatic composition of 
software systems from COTS (Commercial Off-The-Shelf) 
components. But COTS components do not correspond exactly 
to the units and functionality of the designed software system 
architecture modules. One needs a precise composition 
procedure that assures the necessary and sufficient 
components to provide the required units. Linear Software 
Models are rigorous theoretical standards subsuming 
modularity. The theory uses a Modularity Matrix which links 
independent software structors to composable software 
functionals in a Linear Model. 

Keywords: Software Composition, Linear Software 
Models, Well-composed Systems, Modularity Matrix. 

I. INTRODUCTION 

The software composition problem, dealt with in this 
work, is how to build a well-designed modular software 
system from available COTS components that were not 
designed specifically for our particular system. 

This work describes Linear Software Models as a theory 
of software composition. In this theory, the architecture of a 
software system is expressed by two kinds of entities: 
structors and functionals.  

Structors are architectural units, from the structural point 
of view. Functionals are architectural system units from a 
behavioral point of view. Functionals can be, but are not 
necessarily invoked. 

II. THE THEORETICAL MODEL 

A Linear Software Model contains a list of software 
structors and another list of software functionals. Its 
Modularity Matrix is defined as a Boolean matrix which 
asserts links (1-valued elements) between software 
functionals (rows) and software structors (columns). 

Assuming linear independence of structors and of the 
corresponding functionals, one can prove the following 
results about a system's Modularity Matrix: 

• it is Square; 
• it is Reducible, i.e. it can be put in block-

diagonal form. 
The software system modules at a certain level of the 

software hierarchy are represented by the blocks of the 
block-diagonal matrix. 

The theory allows formalization of commonly used 
concepts of Software Engineering. For instance, coupling 
just means lacking linear independence. 

One can express modularity quantitatively by the 
diagonality of a Modularity-Matrix M. It tells us how close 
the matrix 1-valued elements are to the main diagonal. Our 
proposed definition of diagonality is the difference between 
the matrix Trace and offdiag, a new term dealing with off-
diagonal elements:  

 

 
 Proofs of the theory results and more detailed 

expressions, say for the offdiag terms, are found in our 
longer paper [1]. 

III.  CANONICAL CASE STUDIES 

In order to corroborate the theory, we tested it by 
applying it first to small canonical systems and then to larger 
real software systems. 

The first canonical system was the KWIC system 
described in the classical paper by Parnas [2]. Parnas 
suggested two different modularizations of such a system 
and showed by informal argumentation that one of the 
modularizations is better than the other one. 

We have taken the data from Parnas' paper and 
formulated the Modularity matrices for Parnas' 
modularizations. Using the above definition of diagonality, 
its value was calculated for both modularizations. We 
obtained the same results of Parnas' paper by formal means. 

Another canonical system was the Observer design 
pattern taken from the Design Patterns’ GoF book [3]. The 
Observer Design Pattern abstracts one-to-many interactions 
among objects, such that when a "subject" changes, its 
attached "observers" are notified and updated. 

The Observer Modularity Matrix was obtained from the 
sample code in the GoF book, referring to an analog and a 
digital clock, the "concrete observers", following an internal 
clock, the "concrete subject". 

Row/column reordering of a quite arbitrary initial matrix 
causes modules to emerge in a strictly Linear-Reducible 



matrix. Meaningful subject, observer and clock application 
modules emerged from basic structors. 

The Observer analysis illustrates that, despite arbitrary 
initial order, automatic reordering brings about a matrix 
accurately reflecting the pattern functionality. 

IV.  LARGER SOFTWARE SYSTEMS 

We further tested the theory by applying it to larger real 
software systems found in the literature. 

A typical example is the NEESgrid “Network Earthquake 
Engineering Simulation” project. It enables network access 
to allow participation in earthquake tele-operation 
experiments. The system was designed by the NCSA at 
University of Illinois. 

Modularity Matrix functionals for NEESgrid were 
extracted from a report [4] with exactly 10 upper-level 
structors. An initial modularity matrix was obtained with 
sparse scattered non-zero elements typical of initial matrices 
in this kind of analysis.  

Pure algebraic row/column reordering, without prior 
semantic knowledge, brought about an almost block-
diagonal Matrix, easily amenable to meaningful 
interpretation. 

The significant result, common to large case studies, is 
that there are few outliers, and all of them are in 
columns/rows adjacent to the Linear Model blocks. This is 
what we call bordered Linear-Reducible. 

These outliers point out to possible improvements of the 
software system design. 

V. DISCUSSION 

The main contribution of this work is the Linear 
Software Models. These are theoretical standards against 
which to compare actual software systems. The models 
stand upon well-established linear algebra, as a broad basis 
for a solid theory of composition – beyond currently 
accepted principles and practices.  

One can assert, from the Modularity Matrix properties of 
a system, which structors are independent and which 
functionals are independently composable. One can then 
infer which design improvements are desirable. 

This view is very different from design models, such as 
UML, whose purpose is not to serve as theoretical standards. 
Design models freely evolve with design and system 
development. Design models have indefinite modifiability to 
adapt to any system, in response to tests of system 
compliance to design. 

VI.  RELATED WORK 

Matrices have been proposed and used to deal with 
modularity. A prominent example is DSM (Design Structure 
Matrix) proposed by Steward [5], and developed by 
Eppinger and collaborators, see e.g.  [6]. 

Linearity, not found in DSM, is the outstanding feature of 
our standard models. Moreover, our modularity matrices 
display structor to functional links, while both DSM matrix 
dimensions are labeled by the same structures. 

In practice, our modularity matrices may be much more 
compact than DSM. 

Although diagonality has seldom been calculated within 
the context of modularity, such formulas have appeared in 
other contexts. Our offdiag definition is better suited to 
modularity than alternative definitions found in the literature. 

VII.  CONCLUSION 

Software engineering has been perceived as essentially 
different from other engineering fields, due to software’s 
intrinsic variability, implied by the soft prefix. This 
versatility is seen as an advantage to be preserved, even 
though software composition has largely resisted theoretical 
formalization. 

We have shown that Linear Software Models can be 
formulated, without giving up variability. Thus, software 
systems of disparate size, function and purpose, may have 
Linearity in common. 

REFERENCES 
[1] I. Exman, “Linear Software Models for Well-Composed Systems”, in 

S. Hammoudi, M. van Sinderen and J. Cordeiro (eds.), Proc. 7th 
ICSOFT’2012 Conference, pp. 92-101, Rome, Italy, July 2012. 

[2] D.L. Parnas, “On the Criteria to be Used in Decomposing Systems 
into Modules”, Comm. ACM, Vol. 15, pp. 1053-1058, 1972. 

[3] Gamma, E.,  Helm, R., Johnson, R., and Vlissides, J., Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Boston, MA, USA, 1995. 

[4] Finholt, T.A., Horn, D., and Thome, S., “NEESgrid Requirements 
Traceability Matrix”, Technical Report NEESgrid-2003-13, School of 
Information, University of Michigan, USA, 2004. 

[5] Steward, D., “The Design Structure System: A Method for Managing 
the Design of Complex Systems”, IEEE Trans. Eng. Manag., EM-29 
(3), pp. 71-74, 1981.  

[6] Sosa, M.E., Eppinger, S.D., and Rowles, C.M., “A Network 
Approach to Define Modularity of Components in Complex 
Products”, ASME Journal of Mechanical Design, 129, 1118, 2007.

 


	gtse2012_submission_5.pdf
	I. Introduction
	II. Essential Concepts for Creating Theories of Software Development
	III. Framework Definition
	IV. Final Remarks
	V. References




