
Essence, Revised Submission i

Date: 12 November 2012

Essence – Kernel and Language for
Software Engineering Methods

Revised Submission

In response to: Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP (OMG
Document ad/2011-06-26)

__

OMG Document Number: ad/2012-11-01

Standard document URL: http://www.omg.org/spec/Essence/1.0

Associated File(s)*:

 OMG Document Number: ad/ 2012-11-02

XMI: Essence.xmi

ii Essence, Revised Submission

Submission Team

OMG Submitters:

 Fujitsu/Fujitsu Services

 Ivar Jacobson International AB

 Model Driven Solutions

 SOFTEAM

 Universidad Nacional Autónoma de México (UNAM)

Supporting Organizations:

 Alarcos Research Group, University of Castilla – La Mancha (UCLM)

 Florida Atlantic University

 General Direction of Computing and Information Technologies and Communication (DGTIC), National
Autonomous University of Mexico (UNAM)

 Graduate Science and Engineering Computing, National Autonomous University of Mexico (UNAM)

 IICT-BAS

 Impetus

 InfoBLOCK

 International Business Machines Corporation

 JPE Consultores

 KnowGravity Inc.

 KTH Royal Institute of Technology

 Magnabyte

 Metamaxim Ltd.

 PEM Systems

 Science Faculty, National Autonomous University of Mexico (UNAM)

 Software Gurú

 Stiftelsen SINTEF

 Tecnalia Corporación Tecnológica

 Ultrasist

 University of Duisburg-Essen

Essence, Revised Submission iii

Copyright © 2012, Florida Atlantic University
Copyright © 2012, Fujitsu
Copyright © 2012, Fujitsu Services
Copyright © 2012, Impetus
Copyright © 2012, International Business Machines Corporation
Copyright © 2012, Ivar Jacobson International AB
Copyright © 2012, KTH Royal Institute of Technology
Copyright © 2012, Metamaxim Ltd.
Copyright © 2012, PEM Systems
Copyright © 2012, Stiftelsen SINTEF
Copyright © 2012, University of Duisburg-Essen

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification in
any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice
identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for
informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited
permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

iv Essence, Revised Submission

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-
2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only
if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based on
this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

Essence, Revised Submission v

Table of Contents

0 Submission Introduction .. 1
0.1 Preface ... 1

0.1.1 Submission Contacts .. 1

0.2 Responses to RFP Requirements ... 1

0.2.1 Mandatory Requirements ... 1

0.2.2 Optional Requirements .. 7

0.3 Issues to be Discussed ... 7

0.3.1 Kernel ... 7

0.3.1.1 Alphas ... 8

0.3.1.2 Activity Spaces ... 13

0.3.2 SPEM 2.0 ... 16

1 Scope ... 17

2 Conformance ... 17
2.1 Conformance Classes .. 17

2.2 Practice Description Conformance .. 17

2.2.1 Overview .. 17

2.2.2 Level 1: Narrative .. 18

2.2.3 Level 2: Practice Description Interchange ... 18

2.2.4 Level 3: Practice Actionable and Trackable ... 18

2.3 Tool Conformance ... 18

3 Normative References ... 19

4 Terms and Definitions .. 20

5 Symbols and Abbreviations ... 22
5.1 Symbols ... 22

5.2 Abbreviations .. 22

6 Additional Information .. 22
6.1 Submitting Organizations .. 22

6.2 Supporting Organizations .. 22

6.3 Acknowledgements ... 23

7 Overview of the Specification ... 24

vi Essence, Revised Submission

7.1 Introduction to Essence ... 24

7.2 The Key Differentiators .. 25

8 Kernel Specification .. 27
8.1 Overview ... 27

8.1.1 What is the Kernel? .. 27

8.1.2 What is in the Kernel?.. 27

8.1.3 Organizing the Kernel .. 27

8.1.4 Alphas: The Things to Work With ... 28

8.1.5 Activity Spaces: The Things to Do .. 29

8.1.6 Competencies: The Abilities Needed ... 31

8.2 The Customer Area of Concern ... 33

8.2.1 Introduction .. 33

8.2.2 Alphas .. 33

8.2.2.1 Stakeholders.. 33

8.2.2.2 Opportunity ... 37

8.2.3 Activity Spaces .. 40

8.2.3.1 Explore Possibilities ... 40

8.2.3.2 Understand Stakeholder Needs ... 40

8.2.3.3 Ensure Stakeholder Satisfaction ... 41

8.2.3.4 Use the System ... 41

8.2.4 Competencies ... 41

8.2.4.1 Stakeholder Representation .. 41

8.3 The Solution Area of Concern ... 42

8.3.1 Introduction .. 42

8.3.2 Alphas .. 42

8.3.2.1 Requirements .. 42

8.3.2.2 Software System ... 46

8.3.3 Activity Spaces .. 49

8.3.3.1 Understand the Requirements ... 49

8.3.3.2 Shape the System .. 50

8.3.3.3 Implement the System .. 50

8.3.3.4 Test the System ... 50

8.3.3.5 Deploy the System .. 51

8.3.3.6 Operate the System ... 51

Essence, Revised Submission vii

8.3.4 Competencies ... 51

8.3.4.1 Analysis .. 51

8.3.4.2 Development ... 52

8.3.4.3 Testing .. 53

8.4 The Endeavor Area of Concern ... 54

8.4.1 Introduction .. 54

8.4.2 Alphas .. 54

8.4.2.1 Team ... 54

8.4.2.2 Work ... 57

8.4.2.3 Way-of-Working ... 60

8.4.3 Activity Spaces .. 63

8.4.3.1 Prepare to do the Work ... 63

8.4.3.2 Coordinate Activity... 64

8.4.3.3 Support the Team .. 64

8.4.3.4 Track Progress .. 64

8.4.3.5 Stop the Work ... 65

8.4.4 Competencies ... 65

8.4.4.1 Leadership .. 65

8.4.4.2 Management ... 66

9 Language Specification.. 67
9.1 Specification Technique .. 67

9.1.1 Different Meta-Levels .. 67

9.1.2 Specification Format .. 67

9.1.3 Notation Used .. 68

9.2 Conceptual Model of the Language .. 68

9.3 Language Elements and Language Model .. 70

9.3.1 Foundation ... 71

9.3.1.1 BasicElement .. 73

9.3.1.2 ElementGroup ... 74

9.3.1.3 EndeavorAssociation .. 75

9.3.1.4 EndeavorProperty ... 75

9.3.1.5 ExtensionElement ... 76

9.3.1.6 Kernel ... 76

9.3.1.7 LanguageElement ... 77

viii Essence, Revised Submission

9.3.1.8 Library .. 78

9.3.1.9 MergeResolution .. 78

9.3.1.10 Method .. 79

9.3.1.11 Pattern ... 79

9.3.1.12 PatternAssociation .. 80

9.3.1.13 Practice ... 81

9.3.1.14 PracticeAsset .. 82

9.3.1.15 Resource ... 83

9.3.1.16 Tag .. 84

9.3.2 AlphaAndWorkProduct .. 84

9.3.2.1 Alpha .. 85

9.3.2.2 AlphaAssociation.. 86

9.3.2.3 AlphaContainment .. 87

9.3.2.4 Checkpoint .. 87

9.3.2.5 LevelOfDetail ... 88

9.3.2.6 State .. 88

9.3.2.7 WorkProduct ... 89

9.3.2.8 WorkProductManifest ... 90

9.3.3 ActivitySpaceAndActivity ... 90

9.3.3.1 AbstractActivity.. 92

9.3.3.2 Action ... 92

9.3.3.3 Activity ... 93

9.3.3.4 ActivityAssociation .. 94

9.3.3.5 ActivitySpace.. 95

9.3.3.6 CompletionCriterion ... 95

9.3.4 Competency ... 96

9.3.4.1 Competency .. 96

9.3.4.2 CompetencyLevel ... 97

9.3.5 UserDefinedTypes .. 97

9.3.5.1 TypedPattern ... 98

9.3.5.2 TypedResource ... 98

9.3.5.3 TypedTag .. 99

9.3.5.4 UserDefinedType .. 99

9.3.6 View ... 100

9.3.6.1 FeatureSelection ... 101

Essence, Revised Submission ix

9.3.6.2 ViewSelection ... 101

9.4 Composition and Modification .. 105

9.4.1 Introduction .. 105

9.4.2 Notations and Conventions .. 105

9.4.3 Extending ... 106

9.4.3.1 Basic Extension Algorithm ... 106

9.4.3.2 Renaming and Suppression .. 106

9.4.3.3 Standard Extension Functions .. 106

9.4.3.4 Precedence and Chaining .. 107

9.4.4 Merging .. 107

9.4.4.1 Basic Merging Algorithm ... 107

9.4.4.2 Merge Conflict Resolution ... 107

9.4.4.3 Standard Merge Resolution Functions ... 108

9.4.4.4 Precedence and Chaining .. 108

9.4.5 Example ... 108

9.5 Dynamic Semantics ... 112

9.5.1 Domain classes ... 112

9.5.1.1 Recap of Meta-modeling Levels ... 112

9.5.1.2 Naming Convention .. 112

9.5.1.3 Abstract Superclasses ... 113

9.5.2 Operational Semantics ... 114

9.5.2.1 Populating the Level 0 Model .. 114

9.5.2.2 Determining the Overall State .. 115

9.5.2.3 Generating Guidance .. 115

9.5.2.4 Formal definition of the Guidance Function .. 116

9.5.2.5 Further functions... 117

9.6 Adaptation ... 118

9.6.1 Alignment of Level 0 and Level 1 ... 118

9.6.2 Adaptation Approach ... 118

9.6.3 Internal Migration .. 119

9.6.4 External Migration ... 119

9.7 Graphical Syntax ... 119

9.7.1 Specification Format .. 119

9.7.2 Relevant Symbols .. 120

9.7.3 Default Notation for Meta-Class Constructs.. 120

x Essence, Revised Submission

9.7.4 View 1: Alphas and their States ... 120

9.7.4.1 Alpha .. 120

9.7.4.2 Alpha Association ... 121

9.7.4.3 Kernel ... 121

9.7.4.4 State .. 122

9.7.4.5 State Successor ... 122

9.7.4.6 Diagrams ... 123

9.7.4.7 Cards ... 124

9.7.5 View 2: Sub-Alphas and Work Products .. 127

9.7.5.1 Work Product .. 127

9.7.5.2 Alpha Containment ... 128

9.7.5.3 Work Product Manifest ... 129

9.7.5.4 Level of Detail .. 129

9.7.5.5 Level of Detail Successor ... 130

9.7.5.6 Practice ... 130

9.7.5.7 Diagrams ... 131

9.7.5.8 Cards ... 133

9.7.6 View 3: Activity Spaces and Activities .. 134

9.7.6.1 Activity ... 134

9.7.6.2 Activity Space... 134

9.7.6.3 Activity Association (“part-of” kind) ... 135

9.7.6.4 Activity Association (other than the “part-of” kind) .. 136

9.7.6.5 Competency .. 136

9.7.6.6 Competency Level .. 137

9.7.6.7 Diagrams ... 137

9.7.6.8 Cards ... 139

9.7.7 View 4: Patterns ... 141

9.7.7.1 Pattern ... 141

9.7.7.2 Pattern Association ... 142

9.7.7.3 Diagrams ... 142

9.7.7.4 Cards ... 143

9.8 Textual Syntax ... 145

9.8.1 Rules .. 145

9.8.1.1 Root Elements... 145

9.8.1.2 Element Groups .. 146

Essence, Revised Submission xi

9.8.1.3 Kernel Elements ... 147

9.8.1.4 Practice Elements ... 148

9.8.1.5 Auxiliary Elements ... 149

9.8.2 Examples .. 150

Annex A: Optional Kernel Extensions ... 154
A.1 Introduction ... 154

A.1.1 Acknowledgements .. 154

A.1.2 Overview .. 154

A.1.3 Why the Focus on Adding Alphas? .. 154

A.1.4 Why are the Sub-Ordinate Alphas not included in the Kernel? 154

A.1.5 How do you use the Kernel Extensions? ... 155

A.2 Business Analysis Extension ... 155

A.2.1 Introduction .. 155

A.2.2 Alphas .. 155

A.2.2.1 Stakeholder Representative .. 155

A.2.2.2 Need .. 159

A.3 Development Extensions ... 162

A.3.1 Introduction .. 162

A.3.2 Alphas .. 162

A.3.2.1 Requirement Item ... 162

A.3.2.2 Bug.. 166

A.3.2.3 System Element .. 169

A.4 Task Management Extension .. 173

A.4.1 Introduction .. 173

A.4.2 Alphas .. 173

A.4.2.1 Team Member ... 173

A.4.2.2 Task ... 176

A.4.2.3 Practice Adoption ... 179

Annex B: KUALI-BEH Kernel Extension .. 182
B.1 Introduction ... 182

B.1.1 Acknowledgements .. 182

B.1.2 Alphas .. 182

B.1.2.1 Practice Authoring .. 183

B.1.2.2 Method Authoring... 190

xii Essence, Revised Submission

B.1.2.3 Practice Instance ... 196

B.1.2.4 Method Enactment .. 202

Annex C: Alignment with SPEM 2.0 .. 212
C.1 Alignment with SPEM 2.0 .. 212

C.1.1 Why do you not base your submission on SPEM 2.0? .. 212

C.1.1.1 Focused and small specification that is extensible ... 212

C.1.1.2 Domain-specific language instead of a UML profile ... 213

C.1.1.3 Support for dynamic semantics .. 214

C.1.1.4 Wider market appeal ... 215

C.1.2 What are your main differentiators? .. 215

C.1.2.1 Underpinning Values .. 215

C.1.2.2 Support for Enactment .. 216

C.1.2.3 Ease of Learning and Use ... 217

C.1.3 SPEM 2.0 metamodel reuse ... 218

C.2 Overview of SPEM 2.0 features .. 220

C.3 RMC/EPF extensions to SPEM 2.0... 229

C.3.1 Extensions to SPEM 2.0 to support Practice Composition .. 230

C.3.2 UMF Kernel ... 230

Annex D: Alignment with ISO 24744 ... 231
D.1 Alignment with ISO 24744 ... 231

D.1.1 Different metamodel architecture .. 231

D.1.2 Different writing system .. 232

D.1.3 Definition of an ISO 24744 Kernel extension ... 233

D.2 Overview of ISO 24744 features ... 235

Annex E: Practice Examples ... 239

E.1 Practices .. 239

E.1.1 Scrum ... 239

E.1.1.1 Practice ... 239

E.1.1.2 Alphas ... 241

E.1.1.3 Work Products .. 244

E.1.1.4 Activities ... 247

E.1.1.5 Roles ... 249

E.1.2 User Story .. 250

E.1.2.1 Practice ... 250

Essence, Revised Submission xiii

E.1.2.2 Work Products .. 251

E.1.2.3 Activities ... 252

E.1.3 Multi-phase Waterfall .. 252

E.1.3.1 Activities ... 253

E.1.3.2 Alpha Extensions for Multi-Phase Waterfall Requirements 255

E.1.3.3 Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions .. 256

E.1.3.4 Extensions of Requirements Item Alpha for Tracking Individual Multi-Phase Waterfall
Requirement Items ... 256

E.1.4 Lifecycle Examples .. 258

E.1.4.1 The Unified Process Lifecycle ... 259

E.1.4.2 The Waterfall Lifecycle .. 260

E.1.4.3 A set of complementary application development lifecycles 261

E.2 Composing Practices into Methods ... 265

E.2.1 Composing Scrum and User Story ... 265

E.3 Enactment of Methods .. 265

E.3.1 Enactment using Alpha State Cards ... 265

xiv Essence, Revised Submission

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications
for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous
environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a
full-lifecycle approach to enterprise integration that covers multiple operating systems, programming
languages, middleware and networking infrastructures, and software development environments. OMG’s
specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request
Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for
dozens of vertical markets.
More information on the OMG is available at http://www.omg.org/

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm
Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

 UML
 MOF
 XMI
 CWM
 Profile specifications

OMG Middleware Specifications

 CORBA/IIOP
 IDL/Language Mappings
 Specialized CORBA specifications
 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

 CORBAservices
 CORBAfacilities
 OMG Domain specifications
 OMG Embedded Intelligence specifications
 OMG Security specifications

Essence, Revised Submission xv

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or
by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from
ordinary English. However, these conventions are not used in tables or section headings where no
distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Essence, Version 1.0 1

0 Submission Introduction
This document is a third revised specification for review and comment by OMG members.

0.1 Preface

0.1.1 Submission Contacts
Primary contact person:

 Brian Elvesæter, Stiftelsen SINTEF, brian.elvesater@sintef.no

Other contact persons:

 Paul E. McMahon, PEM Systems, pemcmahon@acm.org

 Ian Michael Spence, Ivar Jacobson International AB, ispence@ivarjacobson.com

 Michael Striewe, University of Duisburg-Essen, michael.striewe@paluno.uni-due.de

 Ed Seidewitz, Model Driven Solutions, ed-s@modeldriven.com

 Hanna J. Oktaba, UNAM, hanna.oktaba@ciencias.unam.mx

 Miguel Ehécatl Morales Trujillo, UNAM, migmor@ciencias.unam.mx

0.2 Responses to RFP Requirements
This section provides the responses to the RFP requirements. The following tables provide a cross-reference between the
requirements as stated in the Request for Proposal and the corresponding responses provided by this submission.

0.2.1 Mandatory Requirements
Table 1 – Mandatory Requirements (Kernel)

Requirement Resolution

6.5.1.1 Domain model

The Kernel shall be represented as a domain
model of a small number (expected to be closer to
10 than a 100) of essential concepts of software
engineering and their relationships. The Kernel
shall be expressed in the Language.

The Kernel contains 7 Alphas and 15 Activity spaces capturing
the essentials of software engineering from the perspective of
the things to work with and the things to be done. The Kernel is
defined and presented using the language.

 The Kernel may be extended to identify the essential
competencies required to undertake a software engineering
endeavor. This is likely to add another 5 or 6 elements.

 The Kernel may be extended to include a number of
essential sub-alphas such as practice, tool, work item,
requirements item, system element, stakeholder
representative, team member etc. These would have
minimal state graphs that would be either used as is or
extended to support specific practices. This would add
another 10 – 15 elements.

6.5.1.2 Key conceptual elements

The Kernel shall define the key conceptual

The Kernel’s three areas of concern (see Section 8.2, 8.3 and
8.4) and their corresponding Alphas provide this coverage:

2 Essence, Version 1.0

elements that all software engineering endeavors
have to monitor, sustain and progress, covering at
least the following kinds of concepts (the specific
grouping used here is not required):

a. System: Concepts related to the system being
produced, for example: software, platform, etc.

b. Functionality: Concepts related to the required
function of the system being produced, for
example: requirements, needs, opportunities,
stakeholders, etc.

c. People: Concepts related to the people required
to create a system with the required functionality,
for example: project, team, role, etc.

d. Way of Working: Concepts related to the way an
organized team carries out its work to create a
system with the required functionality, for
example: method, practice, goal, etc.

 a. Covered by the alpha Software System (see Section
8.3.2.2).

 b. Covered by the alphas Requirements (see Section
8.3.2.1), Stakeholders (see Section 8.2.2.1) and Opportunity
(see Section 8.2.2.2).

 c. Covered by the alpha Team (see Section 8.4.2.1).

 d. Covered by the alphas Work (see Section 8.4.2.2) and
Way-of-Working (see Section 8.4.2.3).

6.5.1.3 Generic activities

The Kernel shall define the generic activities that
a team will need to undertake to successfully
engineer and produce a software system, covering
at least the following kinds of activities (the
specific grouping used here is not required):

a. Interacting with stakeholders: Activities related
to necessary interactions with stakeholders, for
example: exploring possibilities, understanding
needs, ensuring satisfaction, handling change, etc.

b. Developing the system: Activities related to
actually constructing a system, for example:
specifying, shaping, implementing, testing,
deploying and operating the system.

c. Managing the project: Activities related to
managing a project, for example: steering the
project, supporting the project team, assessing
progress and concluding the project.

The Kernel’s three areas of concerns (see Section 8.2, 8.3and
8.4) and their corresponding Activity Spaces provide this
coverage:

 a. Covered by the activity spaces in the Customer area of
concern (see Section 8.2.3).

 b. Covered by the activity spaces in the Solution area of
concern (see Section 8.3.3).

 c. Covered by the Endeavor area of concern (see Section
8.4.3).

6.5.1.4 Kernel elements

The definition of each element of the Kernel shall
include the following:

a. A concise description of the meaning of the
element and its use in software engineering,
intuitively understandable to a practitioner.

b. The relationships of the element to other
elements in the Kernel.

c. The various different states the element may
take over time, including initial/entry and
final/exit criteria as appropriate for the element.

d. How the element is applied in practice,

The Kernel element definitions cover:

 a. See the element descriptions.

 b. See Figure 4, Figure 4, the Alpha Associations, and the
Activity Space Completion Criteria.

 c. Each Alpha has a state graph and, for each state, entry
criteria. Each Activity Space has completion criteria.

 d. This will be covered by the examples.

 e. This will be covered by the examples.

 f. The Alpha states allow the measurement of progress and a
subjective assessment of quality. More empirical measures
can be added alongside the sub-alphas as part of maturing

Essence, Version 1.0 3

including how it may be instantiated, tailored or
extended to support the work of a specific project
team using specific practices.

e. How different ways of applying the element
may be compared to each other and guidance on
deciding among the alternatives.

f. Appropriate metrics that can be used to assess
progress, quality, etc.

the kernel specification

6.5.1.5 Scope and coverage

The Kernel shall be sufficient to allow for the
definition of practices and methods supporting
projects of all sizes and a broad range of lifecycle
models and technologies used by significant
segments of the software industry.

The Kernel can be extended to specific segments of the software
industry by creating kernel extensions and specific practices.

The Kernel is light-weight enough to be applied to even the
smallest of projects and comprehensive enough to support even
the largest of software endeavors.

The Alphas states can be used to define all types of lifecycle
model from the most lightweight agile lifecycle through more
formal iterative lifecycles to the most formal and traditional
waterfall lifecycles.

See the lifecycle examples provided in Section E.1.3.

6.5.1.6 Extension

The Kernel shall also allow for extension, both in
terms of addition of new elements and providing
additional detail on existing elements that provide
for practice-specific work products.

a. The Kernel shall allow for project and
organization specific extensions.

b. The Kernel shall be tailorable to specific
domains of application and to projects involving
more than software, e.g., to serve as a basis for
future extensions for systems engineering.

The language allows Kernels to refer to other Kernels that are
based on via composition. This way, elements of two or more
Kernels can be merged to be used together in a specific situation.
The composition algebra also allows merging two elements into
one, that is, extending one element with the contents of the other
element.

Table 2 – Mandatory Requirements (Language)

Requirement Resolution

6.5.2.1.1 MOF metamodel

The Language shall have an abstract syntax model
defined in a formal modeling language. The
submission is expected to reflect this requirement
in a description or mapping to the OMG
architectural framework based on MOF.

The definition of the abstract syntax is based on MOF.

6.5.2.1.2 Static and operational semantics

The Language shall have formal static and
operational semantics defined in terms of the
abstract syntax.

See Section 9.2 for the static semantics and Section 9.5 for the
dynamic semantics.

6.5.2.1.3 Graphical syntax See Section 9.6 for the definition of the graphical syntax. It is
not based in the Diagram Definition specification, since this

4 Essence, Version 1.0

The Language shall have a graphical concrete
syntax that formally maps to the abstract syntax.
The submission is expected to reflect this
requirement in a description following the
Diagram Definition specification [DD] unless
arguments are given for choosing something else.

specification was only available in a beta version at the time of
writing.

6.5.2.1.4 Textual syntax

The Language shall also have a textual concrete
syntax that formally maps to the abstract syntax.

See Section 9.8 for the definition of the textual syntax.

6.5.2.1.5 SPEM 2.0 metamodel reuse

Proposals shall reuse elements of the SPEM 2.0
metamodel where appropriate. Where an
apparently appropriate concept is not reused,
proposals shall document the reason for creating
substitute model elements.

This is discussed in Annex C: Section C.1.

6.5.2.2.1 Ease of use

The Language shall be designed to be easy to use
for practitioners at different competency levels:

a. Those that have very little modeling experience
and quickly and intuitively need to understand
and learn how to use the Language.

b. Intermediate users who are more advanced and
willing to describe what kind of outcome they
expect of their work.

c. Advanced users that can work with all aspects
of the Language to model their complete software
endeavor.

The abstract syntax of the language is organized in packages,
which can to some extend be used independently. Many
attributes and associations are optional, so it is the choice of the
used which one to use. The graphical syntax of the language
provides a concept of views, where each view is concerned with
specific aspects of a kernel or method. This can be used on
different competency levels:

 a. Users with little modeling experience use only packages
“Foundation” and “AlphaAndWorkProduct” and according
views on Alphas and Work Products.

 b. Intermediate users can use language package
“ActivitySpacesAndActivity” and the according view on
Activities in addition.

 c. Advanced users use all packages and add more
sophisticated views not defined in this specification via the
"View" package.

6.5.2.2.2 Separation of views for practitioners and
method engineers

The Language shall provide features to express
two different views of a method: the method
engineer’s view and the practitioner’s view. The
primary users of methods and practices are
practitioners (developers, testers, project leads,
etc.).

The proposal shall be accessible to both
practitioners and method engineers, but should
target the practitioners first and foremost.
Extensions should support method engineers to
effectively define, compose and extend practices,
without complicating its usage by the
practitioners.

The views defined in this language specification are simple
views suitable for practitioners. They focus on a small set of
elements in each view and are thus easily accessible. Moreover,
no knowledge about composition is needed to define simple
practices.

The language specification allows to define additional views on
language constructs which suit the needs of method engineers.
The composition algebra allows to compose language constructs
in many ways, including composition of practices and extension
by composition. However, composed practices are not handled
differently from simple practices, so accessibility for
practitioners is not limited.

6.5.2.2.3 Specification of kernel elements The language defines (amongst others) elements “Alpha” (see

Essence, Version 1.0 5

The Language shall have features for specifying
Kernel elements, including:

a. Formal and informal descriptions of the content
and meaning of an element.

b. The relationship of the element of other
elements.

c. States the element may take over time and the
events that cause transitions among those states.

d. How the element is instantiated, including
provisions for practice-specific tailoring of the
element, and the basis for comparing different
instantiations.

e. Metrics defined to assess various attributes of
the use of the element.

Section 9.3.1.1) and “Activity Space” (see Section 9.3.3.5) for
specifying Kernel elements. The language include:

 a. Attributes for covering natural language descriptions of
these elements as well as state graphs (on Alphas) and
completion criteria (on Activity Spaces) to formally express
the key semantics of these elements.

 b. Alphas and Activity Spaces that can be related to each
other via states on completion criteria. Alphas can be related
to other Alphas via Alpha Associations and Alpha
Containment.

 c. Alphas that own states. Transition among these states is
covered by the dynamic semantics.

 d. Instantiation of Alphas that is covered by the dynamic
semantics.

 e. The dynamic semantics which include proposals on
functions measuring progress or health of an endeavor
based on the number of Alphas that are instantiated or the
states they have reached.

6.5.2.2.4 Specification of practices

The Language shall have features for specifying
practices in terms of Kernel elements, including:

a. Description of the particular cross-cutting
concern addressed by the practice and the goal of
the application of the practice.

b. The Kernel elements relevant to the practice
and how they are instantiated for use in the
practice, including any practice-specific tailoring
of the elements.

c. Any work products required by and produced
by the practice.

d. The expected progress of work under the
practice, including progress states, the rules for
transition between them and their relation to the
states of relevant Kernel elements used in the
practice. (For example, describing a practice that
involves iterative development requires describing
the starting and ending states of every iteration.)

e. Verification that the goal of the practice has
been achieved in it application, particularly in
terms of measurements of metrics defined for its
elements.

The language specification provides an element “Practice” (see
Section 9.3.1.13) which is used and which relates to the Kernel
elements in the following ways:

 a. The element “Practice” owns a description. By looking at
the Alphas used in this Practice it can be determined in
which area this practice can be used.

 b. The element “Practice” can use Alphas and Activity
Spaces from the Kernel. Through composition, it can
redefine parts of these Kernel elements if necessary.
Instantiation of these elements is not specific to practices.

 c. The element “Practice” uses WorkProductManifests to
relate WorkProducts to Alphas.

 d. Progress in general is covered by the state on Alphas and
WorkProducts. Iterations can be covered by Sub-Alphas,
allowing to track states for each iteration individually.

 e. The dynamic semantics can be used to determine whether
all Kernel elements are in their final states.

6.5.2.2.5 Composition of practices

The Language shall have features for the
composition of practices, to describe existing and
new methods, including:

a. Identifying the overall set of concerns
addressed by composing the practices.

The composition algebra allows for composition of practices.

 a. Composed practices are in general not different from
simple practices, so the concerns addressed by a composed
practice can retrieved from looking at the alphas used in the
composed practice.

 b. The composition algebra allows for renaming of elements

6 Essence, Version 1.0

b. Merging two elements from different practices
that should be the same in the resulting practice,
even if they have different contents defined in the
practices being composed. (For example, a use
case practice may have a work product called Use
Case, with a name, a basic flow etc. A testing
practice may have a work product called Testable
Requirement with an identifier and a description.
In the method resulting from composing these two
practices, these two work products should be
merged into one, where the name of the Use Case
is the identifier of the Testable Requirement and
the basic flow of the Use Case is the description
of the Testable Requirement).

c. Separating two elements from different
practices that should be different in the resulting
practice, even though they may superficially seem
to be the same. (For example, in a testing practice
there may be a work product called Plan and in an
iterative development practice there may also be a
work product called Plan. In the method resulting
from composing these two practices these two
work products must be different – e.g., the Testing
Plan vs. the Development Plan.)

d. Modifying an existing method by replacing a
practice within that method by another practice
addressing a similar cross-cutting concern.

so that different elements can be renamed to be safely
identified. Contents are merged recursively. Conflicts on
descriptions have to be solved manually.

 c. Renaming can also be used for changing names prior to
merging, so that elements can be kept distinguishable even
if they look similar in the original practices.

 d. Methods know the practices they are composed of so they
can be modified by redoing the composition with partially
the same and partially new practices.

6.5.2.2.6 Enactment of methods

The semantic definition of the Language shall
support the enactment by practitioners of methods
defined in the Language, for the purposes of

a. Tailoring the methods to be used on a project.

b. Communicating and discussing practices and
methods among the project team.

c. Managing and coordinating work during a
project, including modifications to the methods
over the course of the project by further tailoring
the use of the practices in the method.

d. Monitoring the progress of the project.

e. Providing input for tool support for
practitioners on the project.

 a. Any composition of practices can be instantiated as a
method and used on a particular endeavor, as long as it
addresses the concerns of this endeavor.

 b. Different methods can be queried for advice in a
particular situation (as long as the methods address the
concerns at hand), so team can discuss the different advices
and communicate differences between methods based on
them.

 c. Dynamic semantics are partially defined as denotational
semantics using the overall state of the endeavor as input,
thus not being dependent on using the same method
definition each time.

 d. Tracing the overall state of the endeavor is part of the
dynamic semantics.

 e. Dynamic semantics can partially be formalized, so they
can also be implemented in tools.

Essence, Version 1.0 7

Table 3 – Mandatory Requirements (Practices)

Requirement Resolution

6.5.3.1 Examples of Practices

a. Submissions shall provide working examples to
demonstrate the use of the Kernel and Language
to describe practices. Preferably these examples
should be drawn from existing and well-known
practices.

b. Submissions shall provide working examples to
demonstrate the composing of practices into a
method.

c. Submissions shall provide working examples to
demonstrate how a method can be enacted.

d. Submission shall include a capability to
demonstrate the operational execution of methods
as a proof of concept.

It is expected that the example practices are well-
structured and suited to demonstrate how well the
proposed Kernel and Language can be used to
define good-quality practices. Each example of
practice shall:

a. be described on its own, independent from any
other practice

b. be either explicitly defined as a continuous
activity or have a clear beginning and end states

c. bring defined value to its stakeholders

d. be assessable; in other words, its description
must include criteria for its assessment when used

e. include, whenever applicable, quantitative
elements in its assessment criteria;
correspondingly, the description must include
suitable assessing metrics.

A set of examples is described in Annex C:

 a. See Section E.1.

 b. See Section E.2.

 c. See Section E.3.

 d. See Section E.3.

0.2.2 Optional Requirements
None

0.3 Issues to be Discussed
This section provides the discussions on issues to be discussed from the RFP.

0.3.1 Kernel
This annex contains a discussion of the alternative options considered for the kernel elements defined in the Kernel
Specification. The Annex is presented in two sections:

1. Alphas – Alternatives for the names of the Alphas used in the kernel specification.

2. Activity Spaces – Alternative sets of Activity Spaces and Activity Space names.

8 Essence, Version 1.0

Note: The Alphas are presented first as they were defined first and heavily influenced the selection and naming of the
Activity Spaces

0.3.1.1 Alphas

0.3.1.1.1 Alternatives Considered but Rejected for Opportunity

Opportunity – the set of circumstances that makes it appropriate to develop or change a software system.

On a grand scale, the opportunity to which the software system is addressed could be:

 To go into space – needs software systems on board the spacecraft, for communication, and on the ground.

 To run a chemical plant - needs logistics systems for shipping in and out, process control, new production
processes.

 To provide a new mobile phone platform - needs applications in the phone and on the web.

 To re-organize a business or government department - must continue to serve demands from customers and the
public as software systems are updated, "migrated" or retired.

In a business context, opportunities could include:

 Increase customer satisfaction – for example by a focus on end-to-end performance of the business in customer
terms.

 Decrease staff costs – for example by allowing expert systems to respond to customer enquiries.

 Provide better local weather forecasts – for example by using automation based on new research in meteorology.

On a more personal level, opportunities (motives) could include:

 To make my fortune by producing a hit game.

 To publicize my business to rich people.

 To educate and entertain.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Business Context – considered too vague to be useful. Teams need to identify the opportunity that the business
context provides.

 Domain of Expertise – doesn’t capture the concrete opportunity / problem to be addressed.

 Effect – sounds too much like a side effect of the work rather than its intent.

 Goal – considered too general. This would be too easily confused with the use of goals in project management
and other practices.

 Motive / Motivation / Incentive - good ways to think about the opportunity but rejected as too abstract and
conceptual for most readers.

 Needs – considered too confusing when compared and contrasted with requirements.

 Objectives - considered too general. This would be too easily confused with the Team’s short-term objectives.

 Problem / Underlying Problem – considered too negative.

 Purpose – too easily confused with the requirements. It doesn’t reflect the opportunity to be addressed, and is
more commonly used to construct sentences such as “the purpose of the software system is to address the
opportunity”.

 Value – too confusing as many of the other alphas will have value associated with them. An essential property
of any opportunity but considered too confusing for use as an alternative to opportunity.

Essence, Version 1.0 9

0.3.1.1.2 Alternatives Considered but Rejected for Stakeholders

Stakeholders – The people, groups, or organizations who affect or are affected by a software system.

There are many different types of stakeholders and stakeholder groups, including:

 Users - people who use the system. One very important type of stakeholder is the user. These are a prime
example of a set of stakeholders that must be involved in the development of the software system.

 Project Steering Committees / User Groups / User Communities made up of the project sponsors, users and
other people affected by the development and maintenance of the software system. Many projects have a project
steering committees made up of the project sponsor, the senior supplier, the senior user and other stakeholders or
their representatives. This is one of the practices available to help involve the stakeholders. The same can be
said for structures such as User Groups and User Communities.

 Customers and Sponsors, people who finance the development and maintenance of the software system. They
are also known as the “gold owners”.

 Back-end support stakeholders such as Maintainers and Developers developing, evolving and maintaining the
software system.

 Support and Operations made up of technicians providing feedback on the usage of a software system and
supporting its use.

 Scrum Chickens, part of the stakeholder community in Scrum. Scrum acknowledges the presence of different
types of stakeholders in its concept of pigs and chickens where the development team members are the pigs and
the rest of the stakeholders, such as users and sponsors, are the chickens. Scrum focuses all of the involvement
of the stakeholders through the single role of the Product Owner, which is one of the many practices available
for managing the stakeholders.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Customer – this was explored as a candidate name in an attempt to show that software engineering is customer
focused, but was rejected because 1) not all software engineering endeavors have customers in the traditional
sense, 2) confusion arose between customers and users, purchasers, and sponsors, and 3) there are many
stakeholders that people don’t consider to be customers such as internal governance bodies.

 External Stakeholders – rejected because there are many circumstances where members of the team are also
stakeholders.

 Set of Stakeholders – although it has the benefit of stressing the fact that it represents all of the stakeholders it
was rejected as too cumbersome for natural language use.

 Stakeholder Community - although it has the benefit of stressing the fact that it represents all of the
stakeholders it was rejected as too cumbersome for natural language use.

 Users, Sponsors etc - rejected because they are each only one type of stakeholder.

0.3.1.1.3 Alternatives Considered but Rejected for Requirements

Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

There are many different examples, and ways, of capturing the requirements including:

 In a development context: Declarative Requirement Documents, Use Cases, User Stories and Tests (text and or
code) can all be used to record the Requirements.

 In a continuing context: Training, Service Level Agreements, Problem Investigations, Process Controls may
depend on an understanding of the Requirements, and may over time contribute to learning more about them.

 In an explicit context: A specification of system attributes, with desired and measureable levels, can constitute
the Requirements.

 In an implicit context: The Requirements may simply be that the Software System, or some part of it, must

10 Essence, Version 1.0

continue in use.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Concerns – this was considered but was quickly discarded as being too vague and not immediately meaningful to the
software engineering community.

 Intent – this one was considered in depth as a way of circumventing some of the bad feeling towards the word
requirements in parts of the agile community. Intent is defined as “something that is intended; an aim or
purpose”.

Requirements is preferred to intent because it is more concrete and it represents a specification (whether it be
explicit or tacit) against which the Software System will be accepted (and typically must be demonstrated to
conform). Requirements stand for something that is required and is a necessity or obligation. In comparison with
intent, requirements connote the idea of obligation or a must whereas intent connotes the idea of objective or
desire. Intent was also considered to be a little too abstract to resonate with the majority of the software
engineering community.

 Requirement – Some people would have preferred the term to be used in its singular form. Unfortunately using
the singular of a definition with the word must in can lead people to think that every detailed requirement
statement must be met by the software system produced. This is not the intent. “Requirement” is ambiguous
because it could mean “the requirement” (for the whole system, i.e. a synonym for “the specification”) or it
could mean “a requirement” (i.e. one of many that together comprise the overall requirement / specification).

 Specification – Wikipedia (http://en.wikipedia.org/wiki/Specification_%28technical_standard%29) defines “A
specification is an explicit set of requirements to be satisfied by a material, product, or service.” In some
methods there is a focus on the production of some form of external / functional specification to which the
system must conform. This is often the intent of the requirements documentation.

This term was rejected as it is too easily confused with the technical design specifications that may also be
produced and because it sounds very heavy-weight.

 Usage - Although it is generally considered to be good practice to capture the requirements in some form of
usage based description (be it scenarios, use cases or user stories) it was felt that usage was too restrictive a term
and may cause practitioners to not look at their requirements holistically enough to really capture the desires of
their stakeholders.

0.3.1.1.4 Alternatives Considered but Rejected for Software System

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

There are many types of software system that can be the result of software engineering including:

 Purpose-built (bespoke) facilities including research, simulation, data capture and analysis for a scientific
enterprise, such as drug discovery and testing.

 Bespoke software for a consumer platform such as mobile phone applications, games.

 Commercial-Off-The-Shelf (COTS) product for ‘shrink-wrapped’ sale to customers, such as office productivity.

 COTS products integrated into a business work system. These could be for resource planning (such as SAP
Business Management software) or for technical models and visualization (such as Intergraph SmartPlant).

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Software / Working Software – This was considered to be too limiting. Is it just running code or does it include
all the information involved including the supporting documentation? If a team of people is developing a
database application but does not write a single line of code is what they’ve produced software?

Software was also considered to be too abstract a concept for the primary output from software engineering as in
and of itself it does not require engineering. Software is zeroes and ones, in the form of computer programs and

Essence, Version 1.0 11

the data that they manipulate. To be useful software requires there to be a suitable computing platform upon
which it can be run. The output of software engineering must also consider the computing platform as well as
the software.

 System - Although often used within computing circles this was considered to be too general. The consensus
was that all engineering disciplines produce some kind of system, and therefore software engineering needs to
produce something more specialized than just a system.

It was also thought that using system as a software engineering universal would cause confusion and friction
with the systems engineering community.

 Software Intensive System - Originally proposed as the name, and rejected as it was considered to be limiting;
software engineering is also important in some systems that are not primarily software systems. It was also
considered to be too cumbersome.

 Product / Software Product – It seemed a little too abstract to call the product of software engineering product.
There was also the problem of interpretation. Typically the term product is interpreted in one of two ways:

o commodities offered for sale; "that store offers a variety of products"

o an artifact that has been created by someone or some process; for example "they improve their product
every year"; "they export most of their agricultural production"

The first interpretation implies a much greater scope than just producing working software systems – it would
imply that software engineering should always include marketing and product management activities and that it
always produces a software intensive system that is to be sold.

It was also considered to be too generic - there are many disciplines that produce artifacts that can be sold or
treated as products. We need a universal that helps to differentiate software engineering from other forms of
production and related professions that strive to produce products (such as catering and fashion industries).

 Service - Although it is hoped that the results of software engineering will be of service, and provide useful
services to their users, to consider the product of software engineering to be a service rather than a form of
goods is probably a step too far.

 Solution - The term solution often implies something potentially far-greater than the software system being
produced. It was also considered to be too generic – there are many disciplines that produce solutions. We need
a kernel that helps to differentiate software engineering from other forms of engineering and related professions
that strive to produce solutions (such as medicine and politics).

0.3.1.1.5 Alternatives Considered but Rejected for Work

Work: Activity involving mental or physical effort done in order to achieve a result.

Examples of evidence of work in software engineering endeavors include:

 The Scrum Sprint Backlog.

 Team Task Lists.

 Work item Lists.

 Project Work Breakdown Structures.

 Work Packages.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Project - A project is one of many ways of organizing the work to be done. Project was rejected because much
software engineering is done within product centers and application development teams where the development
work is seen as on-going and not managed as a series of projects.

There is also the issue of organizing support and maintenance work, which again is often not managed as a
series of projects.

12 Essence, Version 1.0

 Task - A task is typically seen as a unit of work, and a way of breaking down the work into individually
addressable work items to be managed within a project plan or via a task board. Task is too specific and find-
grained a term to be used to represent the work in its entirety.

 Activity – This was considered too general for use in the kernel. It would also cause confusion by clashing with
the Kernel Language’s use of the term activity.

 Endeavor – This was considered too abstract to appeal to most software engineers.

0.3.1.1.6 Alternatives Considered but Rejected for Way of Working

Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

There are many different examples of teams adopting a specific way of working:

 Methods such as Dynamic Systems Development Method (DSDM).

 Processes such as the Rational Unified Process (RUP).

 Frameworks such as Scrum and Kanban.

 Bodies of knowledge such as SWEBOK, PMBOK and ITSQB.

 Practices such as Test-Driven Development and Continuous Integration.

 Maturity Models such as CMMI.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Method – not an appealing word to developers and other practitioners. Most practitioners see a method as being
a formal, comprehensively described description of what they are supposed to do, rather than a description of
what they actually do. If you ask a team to describe their way-of-working they will tell you what they do, if you
ask them to describe their method they will either claim that they don’t have one or point you at a stack of
documentation that they generally ignore.

 Process – not an appealing word to developers and other practitioners. Suffers from the same problems as
method.

 Methodology – actually means the study of methods.

 Approach – considered too vague a name for such an important kernel element.

0.3.1.1.7 Alternatives Considered but Rejected for Team

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific
software system.

Software engineering is a team sport and typically involves at least one team. Types of team and team structure used in
software engineering include:

 The Cross-Functional Development Team – A small team containing all the skills needed to develop a working
software system, as used in Scrum and other agile methods.

 Feature Teams and Component Teams – Types of cross-functional team organized around the requirements and
the architecture.

 The Segregated Team – A team that is made up of a number of specialist teams such as:

o The Management Team.

o The Requirements Team.

o The Development Team.

o The Testing Team.

Essence, Version 1.0 13

o The Support Team.

 The Maintenance Team – A team focused on doing maintenance and makings small changes to a software
system.

 The Team of Teams – A team made up of a number of other teams.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

 Development Team / Software Development Team / Software Engineering Team - The term development
team was originally proposed, but it was decided to drop the word development because it was felt it conveyed
the wrong meaning, implying that team membership is limited only to software developers. Some people argued
that the qualifiers made the role of the team clearer but within the context of software engineering, and our
software engineering kernel, the role and purpose of the team is quite clear.

The same reasoning holds for Software Development Team and Software Engineering Team.

 Production Team / Enactment Team / Delivery Team - The word “Production” could be used to help classify
the team as the one actively involved in undertaking and participating in the work. “Production” distinguishes
this team from other interested parties that whilst influencing, guiding and supporting the endeavor are not
working directly on development activities.

The term is in general use in the production of plays, television shows and films to describe the group of
variously skilled people working to produce the play, TV show or film in question. This also has a high degree
of resonance when applied to the team working on a software system.

This term is rejected as too heavy and cumbersome, and also too limiting. The fact the Team is the Production
Team can be seen from its relationship with the software system and the stakeholder community. Within the
context of software engineering, and our set of software engineering universals, the role and purpose of the team
is quite clear.

The same reasoning holds for Enactment Team and Delivery Team.

 People, Software People, Software System People, Software Engineers - Whilst these terms do perhaps
classify the interests of the group it does not suggest any accountability for the work or endeavor.

The term ‘people’ was rejected as too general. The term ‘software engineers' was rejected as too limiting (see
also Development Team and Production Team).

0.3.1.2 Activity Spaces

0.3.1.2.1 Alternative Names for the Activity Spaces

Alternative names were considered for each of the activity spaces included in the Kernel Specification. Table 4 shows the
various names considered for the Activity Spaces in the Customer Area of Concern.

Table 4 – Alternative Names for the Customer Activity Spaces

Name Alternative Comments

Explore Possibilities Understand the Need ‘Understand the Need’ sounded too much like it should
deal with the requirements rather than the stakeholders
and the opportunity.

Involve Stakeholders Engage Stakeholders ‘Involve’ was preferred to ‘Engage’ as it reinforces the
fact the stakeholders must be active in supporting the
team.

Ensure Stakeholder Satis-
faction

Accept the System The purpose here is to make sure that the stakeholders are
happy with the software system produced, and not to
force them to accept something they don’t want. This is

14 Essence, Version 1.0

why ‘Ensure Stakeholder Satisfaction’ was preferred.

Use the System Exploit the System ‘Exploit’ sounded too much like sales and marketing to
resonate with software developers.

The merging of the two Activity Spaces ‘Engage Stakeholders’ and ‘Ensure Stakeholder Satisfaction’ into a single
Activity Space was also considered but was rejected as it would have covered too many state changes.

Table 5 shows the various names considered for the Activity Spaces in the solution Area of Concern.

Table 5 – Alternative Names for the Solution Activity Spaces

Name Alternative Comments

Understand Requirements Specify the System ‘Specify the System’ sounded very heavyweight and un-
agile. ‘Understand Requirements’ was judged to more
accurately reflect the purpose of the Activity Space and to
be more widely acceptable.

Shape the System Architect the System Both of these alternatives seemed to be suggesting specif-
ic approaches to achieving the underlying state changes.

Design the System

Implement the System Implement Software There is more than just implementing the software in-
volved in implementing a software system.

Create the System ‘Create the System’ sounded too much like green-field
development where no earlier version of the software
system exists.

Test the System Verify the System ‘Test’ was considered to be simpler and more intuitive
than the more formal sounding ‘Verify’

Deploy the System Release the System These alternatives were all considered to just be one as-
pect of deploying the system.

Package the System

Deliver the System

Go Live

Operate the System Support the System ‘Operate’ was judged to communicate the purpose of the
Activity Space better than ‘Support’.

Table 6 shows the various names considered for the Activity Spaces in the endeavor Area of Concern.

Table 6 – Alternative Names for the Endeavour Activity Spaces

Name Alternative Comments

Prepare to do the Work Start the Work The purpose of the Activity Space is to get ready to start
the work, hence this alternative was rejected.

Essence, Version 1.0 15

Prepare the Endeavor This alternative was judged less intuitive than ‘Prepare to
do the Work’.

Co-ordinate Activity Co-ordinate the Work More than just the work is being coordinated.

Steer the Work ‘Steer the Work’ was judged to be less accessible than
‘Coordinate Activity’. Also more than just the work is
being coordinated.

Support the Team No alternatives were suggested.

Track Progress Track the Work More than just the work is being tracked.

Do the Work Seemed to contradict the purpose of the Activity Spaces
all of which contain work to be done.

Assess Progress Sounds too judgmental.

Stop the Work Conclude the Endeavor This alternative was judged less intuitive than ‘Stop the
Work’.

 Closedown the Work ‘Stop’ seemed simpler and less formal.

The merging of the two Activity Spaces ‘Co-ordinate Activity’ and ‘Support the Team’ into a single Activity Space was
also considered but was rejected as it would have covered too many state changes.

0.3.1.2.2 Alternative sets of activity spaces

An alternative set of Activity Spaces was also prepared, one that used four areas of concern:

 People – This area of concern contains everything to do with the people directly or indirectly in the
development of the software system.

 Purpose - This area of concern contains everything to do with understanding and specifying what the software
system will do.

 Solution - This area of concern covers everything to do with the development of the software system.

 Endeavor - This area of concern contains everything to do with the work to be done and the way that it is to be
approached.

This is shown in Figure 1. In this model the Alphas were also re-organized to place the team and stakeholders into the
new people Area of Concern, and opportunity and requirements into the purpose Area of Concern.

16

In this m
be done
enough in
the Work
succinct t

0.3.2
The discu

Figu

model the numb
as part of any
n particular th
k’. The conse
that the one p

SPEM
ussion on issu

ure 1 – Alter

ber of Activity
y software en
he separation b
ensus was tha
resented here

M 2.0
ues related to S

rnative Set o

y Spaces was
gineering end
between ‘Acq
at the model
.

SPEM 2.0 is p

of Activity S

considered to
deavor. Some
quire Resource

included in t

presented in A

Spaces using

o be too many
of the Activi

es’ and ‘Start t
the Kernel Sp

Annex C:

g four Areas

to succinctly
ty Spaces wer
the Work’, and
pecification w

 Ess

s of Concern

represent the
ere not consid
nd ‘Release Re
was more intu

sence, Version

n

things that ne
dered to be dis
esources’ and
uitive, clearer

n 1.0

eed to
screte
‘Stop

r, and

Essence, Version 1.0 17

1 Scope
This document, entitled “Essence – Kernel and Language for Software Engineering Methods” (referred to herein as
Essence, Version 1.0.), is submitted as a response to the OMG "Foundation for the Agile Creation and Enactment of
Software Engineering Methods" (FACESEM) RFP (OMG Document ad/2011-06-26). It provides comprehensive
definitions and descriptions of the kernel and the language for software engineering methods, which address the
mandatory requirements set forth in FACESEM RFP.

The Kernel provides the common ground for defining software development practices. It includes the essential elements
that are always prevalent in every software engineering endeavor, such as Requirements, Software System, Team and
Work. These elements have states representing progress and health, so as the endeavor moves forward the states
associated with these elements progress. The Kernel among other things helps practitioners (e.g., architects, designers,
developers, testers, developers, requirements engineers, process engineers, project managers, etc.) compare methods and
make better decisions about their practices.

The Kernel is described using the Language, which defines abstract syntax, dynamic semantics, graphic syntax and
textual syntax. The Language supports composing two practices to form a new practice, and composing practices into a
method, and the enactment of methods.

This document addresses the RFP mandatory requirements of the Kernel, the Language, and Practice in the following:

 It defines the Kernel and its organizations into three areas of concerns: Customer, Solution and Endeavor.

 It defines the Kernel Alphas (i.e., the essential things to work with), and Activity Spaces (i.e., the essential
things to do).

 It describes the Language specification, Language elements and Language model.

 It defines Language Dynamic Semantics, Graphical Syntax and Textual Syntax.

 It describes examples of composing Practices into Methods and Enactment of Methods.

2 Conformance

2.1 Conformance Classes
The normative requirements in this specification are contained in Clause 8, Clause 9, and Annex A. This specification
provides two conformance classes.

 Practice Description Conformance. This class applies to the description of practices, defined using the Essence
language, as specified in Clause 9.

 Tool Conformance. This class applies to tools that provide a means for the definition of description practices in
the Essence language, using the Essence kernel, as specified in Clause 8, with optional extensions given in
Annex A.

A claim of Essence conformance shall declare the practice or tool for which conformance is claimed. Conformance is
achieved by demonstrating that the requirements for the appropriate conformance class have been satisfied, as further
discussed in the following subclauses.

2.2 Practice Description Conformance

2.2.1 Overview
This conformance class applies to published practice descriptions defined using the Essence language, as specified in
Clause 9. It provides a clear indication of what can be done with the practice description. One of three levels of
conformance may be claimed for a practice description, as further described below.

18 Essence, Version 1.0

Note:

These practice description conformance levels are not associated with a practice; they are measure of the level
of detail with which the practice has been described. It is quite possible for the same practice to be described at
all the different conformance levels, for example Scrum could be described by different authors at different
conformance levels. It is also possible for teams to use practices which are described at different conformance
levels, for example a team could have their much used development and requirement practices at level 3 as these
areas are important for them to monitor and track, and their project kick-off practices at level 1 as it is not as
important to track their progress and they are typically only performed once by the team.

2.2.2 Level 1: Narrative
Practice descriptions defined at this conformance level use the conceptual elements of the Essence language as a
framework for structuring their text. All of the elements in the practice are expressed correctly according to the language;
for example all the work products appear as work products and all the activities appear as activities. Beyond this simple
classification of the elements in the practice there are no other constraints or invariants.

Once published practices at this level can be referenced by other practices but cannot be exchanged between tools or
automatically composed with other practices. Practices described at this level are typically just free format text and there
is no XMI interchange format for sharing or composing them.

2.2.3 Level 2: Practice Description Interchange
Practice descriptions defined at this level use the full expressive quality of the language. Everything is typed properly and
uses any applicable language element attributes and associations correctly; for example all the elements will have be
names and brief descriptions conformant with the language rules and all associations between the elements will be
queryable and traversable.

Level 2 practices can be exchanged between tools in XMI. This formal use of the language allows the practices to be
composed with the kernel and other practices. Practice descriptions at this level are highly structured and will require
specialist authoring or modeling tools to produce.

Level 2 practice descriptions add rigor and XMI interchange to Level 1. This provides the consistency and robustness to
all tools to “do things” with them. They can read, manipulate and compose the practices but a person is needed to
"action" the resulting composition.

2.2.4 Level 3: Practice Actionable and Trackable
Practice descriptions defined at this level use the full power of the language to ensure they are prepared to be
automatically actioned and tracked. For example there will always be an Alpha with fully defined state machine with a
complete set of checklists either contained in, or extended by the practice and all activities will be clearly related to the
Alpha state progressions that they enable.

Like Level 2 practice descriptions, level 3 practice descriptions can be exchanged between tools using XMI, and like the
level 2 practice descriptions they can be composed with the kernel and other practice descriptions. Practice descriptions
at this level are highly structured and will require specialist authoring or modeling tools to produce.

Level 3 practice descriptions add additional detail and precision over and above that needed for practice descriptions
defined at Level 2. The additional information ensures full support for the language’s dynamic semantics enabling tools
to provide more sophisticated features such as real-time alpha state tracking, task generation, pattern matching and
completeness checking.

2.3 Tool Conformance
This conformance class applies to tools that provide the ability to define practice descriptions using the Essence
language. Conformance to this specification may be claimed for such a tool if it satisfies the requirements for both
Clauses 8 and 9 as follows.

 The tool shall implement the entire Essence kernel, as specified in Clause 8, as a basis for allowing the

Essence, Version 1.0 19

definition of practice descriptions in the Essence language.

 A practice description produced by the tool shall conform to the requirements for the Essence language, as
specified in Clause 9, at any one of the conformance levels defined in subclause 2.2.

For a tool that conforms to this specification as defined above, conformance may also be additionally claimed for one or
more of the optional kernel extensions specified in Annex A.

 A tool conforms to the Essence business analysis extension if it implements the entire business analysis
extension, as specified in subclause A.1, as a basis for allowing the definition of practice descriptions at any of
the three practice description conformance levels.

 A tool conforms to the Essence development extension it implements the entire development extension, as
specified in subclause A.2, as a basis for allowing the definition of practice descriptions at any of the three
practice description conformance levels.

A tool conforms to the Essence task management extension conformance class if it implements the entire task
management extension, as specified in subclause A.3, as a basis for allowing the definition of practice descriptions at any
of the three practice description conformance levels.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

 Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP, OMG
Document ad/2011-06-26, http://www.omg.org/cgi-bin/doc?ad/2011-06-26

 OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Document formal/2011-08-07,
http://www.omg.org/spec/MOF/2.4.1/

 OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, OMG Document formal/2011-
08-05, http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

 Diagram Definition (DD), Version 1.0 - FTF Beta 2, OMG Document ptc/2011-07-13,
http://www.omg.org/spec/DD/1.0/Beta2/

 Software & Systems Process Engineering Meta-Model Specification, Version 2.0, OMG Document
formal/2008-04-01, http://www.omg.org/spec/SPEM/2.0/

 K. Schwaber and J. Sutherland, "The Scrum Guide", Scrum.org, October 2011.
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

20 Essence, Version 1.0

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Activity

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Activity space

A placeholder for something to be done in the software engineering endeavor. A placeholder may consist of zero to many
activities.

Alpha

An essential element of the software engineering endeavor that is relevant to an assessment of the progress and health of
the endeavor. Alpha is an acronym for an Abstract-Level Progress Health Attribute

Alpha association

An alpha association defines a relationship between two alphas.

Area of concern

Elements in kernels or practices may be divided into a collection of main areas of concern that a software engineering
endeavor has to pay special attention to. All elements fall into at most one of these.

Check list item

A check list item is an item in a check list that needs to be verified in a state.

Competency

A characteristic of a stakeholder or team member that reflects the ability to do work.

A competency describes a capability to do a certain job. A competency defines a sequence of competency levels ranging
from a minimum level of competency to a maximum level. Typically, the levels range from 0 – assists to 5 – innovates.
(See Section 8.1.6 and Section 9.3.4.)

Constraints

Restrictions, policies, or regulatory requirements the team must comply with.

Enactment

The act of applying a method for some particular purpose, typically an endeavor.

Endeavor

An activity or set of activities directed towards a goal.

Invariant

An invariant is a proposition about an instance of a language element which is true if the instance is used in a language
construct as intended by the specification.

Kernel

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor.

Essence, Version 1.0 21

Method

A method is a composition of practices forming a (at the desired level of abstraction) description of how an endeavor is
performed. A team’s method acts as a description of the team’s way-of- working and provides help and guidance to the
team as they perform their task. The running of a development effort is expressed by a used method instance. This
instance holds instances of alphas, work products, activities, and the like that are the outcome from the real work
performed in the development effort. The used method instance includes a reference to the defined method instance,
which is selected as the method to be followed.

Opportunity

The set of circumstances that makes it appropriate to develop or change a software system.

Pattern

A pattern is a description of a structure in a practice.

Practice

A repeatable approach to doing something with a specific purpose in mind.

A practice provides a systematic and verifiable way of addressing a particular aspect of the work at hand. It has a clear
goal expressed in terms of the results its application will achieve. It provides guidance to not only help and guide
practitioners in what is to be done to achieve the goal but also to ensure that the goal is understood and to verify that it
has been achieved. (See Section 9.3.1.13.)

Requirements

What the software system must do to address the opportunity and satisfy the stakeholders.

Role

A set of responsibilities.

Software system

A system made up of software, hardware, and data that provides its primary value by the execution of the software.

Stakeholders

The people, groups, or organizations who affect or are affected by a software system.

State

A state expresses a situation where some condition holds.

State Graph

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states.

Team

The group of people actively engaged in the development, maintenance, delivery and support of a specific software
system.

Transition

A transition is a directed connection from one state in a state machine to a state in that state machine.

Way-of-working

The tailored set of practices and tools used by a team to guide and support their work.

22 Essence, Version 1.0

Work

Work is defined as all mental and physical activities performed by the team to produce a software system.

Work item

A piece of work that should be done to complete the work. It has a concrete result and it leads to either a state change or a
confirmation of the current state. Work item may or may not have any related activity.

5 Symbols and Abbreviations

5.1 Symbols
There are no symbols defined in this specification.

5.2 Abbreviations
 Sub-alpha: Subordinate alpha

6 Additional Information

6.1 Submitting Organizations
The following organizations submitted this specification:

 Fujitsu/Fujitsu Services

 Ivar Jacobson International AB

 Model Driven Solutions

 SOFTEAM

 Universidad Nacional Autónoma de México (UNAM)

6.2 Supporting Organizations
The following organizations supported this specification:

 Alarcos Research Group, University of Castilla – La Mancha (UCLM)

 Florida Atlantic University

 General Direction of Computing and Information Technologies and Communication (DGTIC), National
Autonomous University of Mexico (UNAM)

 Graduate Science and Engineering Computing, National Autonomous University of Mexico (UNAM)

 IICT-BAS

 Impetus

 InfoBLOCK

 International Business Machines Corporation

Essence, Version 1.0 23

 JPE Consultores

 KnowGravity Inc.

 KTH Royal Institute of Technology

 Magnabyte

 Metamaxim Ltd.

 PEM Systems

 Science Faculty, National Autonomous University of Mexico (UNAM)

 Software Gurú

 Stiftelsen SINTEF

 Tecnalia Corporación Tecnológica

 Ultrasist

 University of Duisburg-Essen

6.3 Acknowledgements
The work is based on the Semat initiative incepted at the end of 2009, which was envisioned by Ivar Jacobson, along
with the other two Semat advisors Bertrand Meyer and Richard Soley.

Among all the people who have worked as volunteers to make this submission possible, there are in particular a few
people who have made significant contributions: Ivar Jacobson guides the work of this submission; Paul E. McMahon
coordinates this submission; Ian Michael Spence leads the architecture of the Kernel and the Kernel specification;
Michael Striewe leads the Language specification with technical guidance from Brian Elvesæter on the metamodel,
Stefan Bylund on the graphical syntax, Ashley McNeile on the dynamic semantics and Gunnar Övergaard on
composition and merging.

The following persons are members of the core team that have contributed to the content specification: Andrey A. Bayda,
Arne-Jørgen Berre, Stefan Bylund, Bob Corrick, Dave Cuningham, Brian Elvesæter, Todd Fredrickson, Michael
Goedicke, Shihong Huang, Ivar Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Bruce MacIsaac, Paul E.
McMahon, Ashley McNeile, Winifred Menezes, Hiroshi Miyazaki, Miguel Ehécatl Morales Trujillo, Magdalena Dávila
Muñoz, Hanna J. Oktaba, Bob Palank, Tom Rutt, Ed Seidewitz, Ed Seymour, Ian Michael Spence, Michael Striewe and
Gunnar Övergaard.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
the work behind this specification: Scott Ambler, Chris Armstrong, Gorka Benguria, Jorn Bettin, Stefan Britts, Anders
Caspar, Adriano Comai, Jorge Diaz-Herrera, Jean Marie Favre, Carlo Alberto Furia, Tom Gilb, Carson Holmes, Ingvar
Hybbinette, Sylvia Ilieva, Capers Jones, Melir Page Jones, Mark Kennaley, Philippe Kruchten, Yeu Wen Mak, Tom
McBride, Bertrand Meyer, Martin Naedele, Jaana Nyfjord, Jaime Pavlich-Mariscal, Walker Royce, Andrey Sadovyk,
Markus Schacher, Roly Stimson and Paul Szymkowiak.

24 Essence, Version 1.0

7 Overview of the Specification

7.1 Introduction to Essence
The work behind Essence is the Semat initiative1, 2, 3 – Software Engineering Method and Theory – that was incepted at
the end of 2009. Semat addresses the many issues that challenge the field of software engineering. For example, the
reliance on fads and fashions, the lack of a theoretical basis, the abundance of unique methods that are hard to compare,
the dearth of experimental evaluation and validation, and the gap between academic research and its practical application
in industry.

Successfully developing software systems benefit from the application of effective methods and well-defined processes,
as indicated in the RFP. Traditionally, a method definition is thought of as being instantiated, and the activities – created
from the definition – are executed by practitioners (e.g., analysts, developers, testers, project leads) in some predefined
order to get the result, specified by the definition. These software method engineering approaches are often considered by
development teams as being too heavyweight and inflexible. The view – “the team is the computer, the process is the
program” – is not suitable for creative work like software engineering that requires support for work, which is agile, trial-
and-error based and collaboration intensive.

Essence defines a Kernel and a Language for software engineering method specification. They are scalable, extensible,
and easy to use, and allow people to describe the essentials of their existing and future methods and practices so that they
can be compared, evaluated, tailored, used, adapted, simulated and measured by practitioners as well as taught and
researched by academics and researchers. The Kernel provides the common ground to among other things help
practitioners to compare methods and make better decisions about their practices. One of the most important features is
that the Kernel elements form the basis of a vocabulary – a map of the software engineering context. The map would be
used as a base on top of which we can define and describe any method or practice in existence or foreseen in the near
future. The Kernel should also be extensible to care for new technologies, new practices, new social working patterns,
and new research. This is also an application of the principle of separation of concerns: separating the kernel elements
from the specifics of the different methods.

The kernel elements are always prevalent in any software endeavors. They are what we already have (e.g. teams and
work), what we already do (e.g. specify and implement), and what we already produce (e.g. software systems) when we
develop software. An important goal is that the Kernel is small and light at its base but extensible to cover more advanced
uses, such as dealing with life-, safety-, business-, mission-, and security-critical systems.

The Kernel and its elements are defined using a domain-specific language (the domain being practices for software
development), which has a static base (syntax and well-formedness rules) to allow defining methods effectively, and with
additional dynamic features (operational semantics) to enable usage, and adaption. In addition, the language is also used
to define practices and methods.

Practices are described using the Kernel elements; they also allow a practice to be merged with other relevant practices to
form a higher-level “method” or composed practice. The elements in the Kernel must be defined in a way that allows
them to be extensible and tailorable supporting a wide variety of practices, methods, and development teams. The key
concepts include:

 A Method is a composition of practices. Methods are dynamic and used. Methods are not just descriptions for
developers to read, they are dynamic, supporting their day-to-day activities. This changes the conventional
definition of a method. A method is not just a description of what is expected to be done, but a description of
what is actually done.

1 Software Engineering Method and Theory (Semat) website: www.semat.org
2 Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Call for Action: The Semat Initiative” Dr. Dobb's Journal
December 10, 2009. Online at http://www.drdobbs.com/architecture-and-design/222001342
3 Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Software Engineering Method and Theory – A Vision Statement”,
online at http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf

Essence, Version 1.0 25

Figure 2 – Method architecture

 A Practice is a repeatable approach to doing something with a specific purpose in mind. A practice provides a
systematic and verifiable way of addressing a particular aspect of the work at hand.

 The Kernel includes essential elements of software engineering.

 The Language is the domain-specific language to define methods, practices and the essential elements of the
kernel.

The relationships among these concepts are depicted in Figure 24

The language design was driven by two main objectives: making methods visible to developers and making methods
useful to developers. The first objective led to the definition of both textual and graphical syntax as well as to the
development of a concept of views in the latter. This way, developers can represent methods in exactly the way that suits
their purposes best. By providing both textual and graphical syntax, nobody is forced to use a graphical notation in
situations where textual notation is easier to handle, and vice versa. By providing a concept of views, nobody is forced to
show a complete graphical representation in situations where a partial graphical representation of a method is sufficient.

The second objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running software
engineering endeavor, a method can be consulted and it returns advice on what to do next. Moreover, a method can be
tweaked at any point in time and still returns (a possibly alternate) advice on what to do next for the same situation.

7.2 The Key Differentiators
The Essence work is built on the experiences and lessons learnt in the software development community. Some of the
key differentiators set this work apart from what has been done in the past. These are the following5:

1. Finding the essence of software engineering and finding a way to embody that essence in a kernel enables us to
build our knowledge on top of what we have known and learnt, and apply and reuse gained knowledge across
different application domains and software systems of differing complexity.

2. Work with methods in an agile way that are as close to practitioners’ practice as possible, so that they can evolve
the methods and adapt them to their particular context.

3. Apply the principle of Separation of Concerns (SoC) that puts focus on the things that matter the most.

4 Ivar Jacobson, Shihong Huang, Mira Kajko-Mattsson, Paul McMahon, Ed Seymour. “Semat - Three Year Vision”
Programming and Computer Software 38(1): 1-12 (2012), Springer 2012. DOI: 10.1134/S0361768812010021.
5 Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence, Svante Lidman. The Essence of Software Engineering –
Applying the Semat Kernel, in preparation to be published

26 Essence, Version 1.0

a. Focusing on what helps the least experienced developers over what helps the more experienced developers. This
is motivated by the understanding that the majority of the development community is not interested in method
descriptions but rather the use of the method.

b. Supporting practitioners over process engineers. This is motivated by the conviction that process engineers
should work on what practitioners’ need, based on the real work they must do on their software endeavor.

c. Emphasizing intuitive and concrete graphical syntax over formal semantics. This does not mean that the
semantics is not as important nor as necessary. However, the description should be provided in a language that
can be easily understood by the vast developer community whose interests are to quickly understand and use the
language, rather than caring about the beauty of the language design. Hence, Essence pays extreme attention to
syntax.

d. Focusing on method use over method definition. Most previous similar efforts have paid interest to method
definition, i.e., how to capture methods. These efforts have not focused on how to support the use of a method in
software endeavors. As a result, the methods became “shelf-ware” that are not relevant to practitioners who
actually develop the software. This Essence proposal focuses on the use of methods so that developers
themselves can take control of their own way of working and allow the method to evolve as their endeavor
progresses.

For detailed descriptions of the Kernel and the Language please refer to Section 8 Kernel Specification and Section 10
Language Specification.

Essence, Version 1.0 27

8 Kernel Specification
This section presents the specification for the Software Engineering Kernel. It begins with an overview of the kernel as a
whole and its organization into the three areas of concern. This is followed by a description of each area of concern and
its contents.

8.1 Overview

8.1.1 What is the Kernel?
The Software Engineering Kernel is a stripped-down, light-weight set of definitions that captures the essence of effective,
scalable software engineering in a practice independent way.

The focus of the kernel is to define a common basis for the definition of software development practices, one that allows
them to be defined and applied independently. The practices can then be mixed and matched to create specific software
engineering methods tailored to the specific needs of a specific software engineering community, project, team or
organization. The kernel has many benefits including:

 It allows you to apply as few or as many practices as you like.

 It allows you to easily capture your current practices in a reusable and extendable way.

 It allows you to evaluate your current practices against a technique neutral control framework.

 It allows you to align and compare your on-going work and methods to a common, technique neutral
framework, and then to complement it with any missing critical practices or process elements.

 It allows you to start with a minimal method adding practices as the endeavor progresses and when you need
them.

8.1.2 What is in the Kernel?
The kernel is described using a small subset of the Kernel Language. It is organized into three areas of concern, each
containing a small number of:

 Alphas – representations of the essential things to work with. The Alphas provide descriptions of the kind of
things that a team will manage, produce, and use in the process of developing, maintaining and supporting good
software. They also act as the anchor for any additional sub-alphas and work products required by the software
engineering practices.

 Activity Spaces – representations of the essential things to do. The Activity Spaces provide descriptions of the
challenges a team faces when developing, maintaining and supporting software systems, and the kinds of things
that the team will do to meet them.

To maintain its practice independence the kernel does not include any instances of the other language elements such as
work products or activities. These only make sense within the context of a specific practice.

The best way to get an overview of the kernel as a whole is to look at the full set of Alphas and Activity Spaces and how
they are related.

8.1.3 Organizing the Kernel
The Kernel is organized into three discrete areas of concern, each focusing on a specific aspect of software engineering.
As shown in Figure 2, these are:

 Customer – This area of concern contains everything to do with the actual use and exploitation of the software
system to be produced.

 Solution – This area of concern contains everything to do the specification and development of the software
system.

28

Througho
different
facilitate

8.1.4
The kern
software
software
in Figure

Endeavor – T
work.

out the diagr
color codes
the understan

Alpha
nel Alphas 1) c

engineering
engineering m

e 3.

This area of c

ams in the b
where green

nding and trac

as: The T
capture the ke
endeavor to b

methods and p

Figure 3 –

concern contai

ody of the k
stands for c

king of which

Things to
ey concepts in
be tracked an
practices. The

Figur

– The Three

ins everything

kernel specific
customer, yell
h area of conc

o Work W
nvolved in sof
nd assessed, a
 Alphas, their

re 4 – The K

Areas of Co

g to do with th

cation, the th
low for soluti
ern owns whi

With
ftware enginee
and 3) provid
r relationships

Kernel Alpha

oncern

he team, and t

ree areas of
ion, and blue
ch Alphas and

ering, 2) allow
de the commo

and their own

as

 Ess

the way that t

concern are
e for endeavo
d Activity Spa

w the progress
on ground fo
ning areas of

sence, Version

they approach

distinguished
or. The colors
aces.

s and health o
r the definitio
concern are sh

n 1.0

h their

with
s will

of any
on of
hown

Essence, Version 1.0 29

In the customer area of concern the team needs to understand the stakeholders and the opportunity to be addressed:

1. Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the
team’s shared understanding of the stakeholders’ needs, and helps shape the requirements for the new software
system by providing justification for its development.

2. Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity and are the source of the requirements and funding for the software
system. They must be involved throughout the software engineering endeavor to support the team and ensure
that an acceptable software system is produced.

In the solution area of concern the team needs to establish a shared understanding of the requirements, and implement,
build, test, deploy and support a software system that fulfills them:

3. Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the
stakeholders and the team members, and use it to drive the development and testing of the new system.

4. Software System: A system made up of software, hardware, and data that provides its primary value by the
execution of the software.

The primary product of any software engineering endeavor, a software system can be part of a larger software,
hardware or business solution.

In the endeavor area of concern the team and its way-of-working have to be formed, and the work has to be done:

5. Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a
software system matching the requirements, and addressing the opportunity, presented by the customer. The
work is guided by the practices that make up the team’s way-of-working.

6. Team: The group of people actively engaged in the development, maintenance, delivery and support of a
specific software system.

The team plans and performs the work needed to update and change the software system.

7. Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working
environment. As their work proceeds they continually reflect on their way of working and adapt it as necessary
to their current context.

8.1.5 Activity Spaces: The Things to Do
The kernel also provides a set of activity spaces that complement the Alphas to provide an activity based view of
software engineering. The kernel activity spaces are shown in Figure 5.

In the customer area of concern the team has to understand the opportunity, and support and involve the stakeholders:

 Explore Possibilities: Explore the possibilities presented by the creation of a new or improved software system. This
includes the analysis of the opportunity to be addressed and the identification of the stakeholders.

 Understand Stakeholder Needs: Engage with the stakeholders to understand their needs and ensure that the right
results are produced. This includes identifying and working with the stakeholder representatives to progress the
opportunity.

 Ensure Stakeholder Satisfaction: Share the results of the development work with the stakeholders to gain their
acceptance of the system produced and verify that the opportunity has been successfully addressed.

 Use the System: Use the system in a live environment to benefit the stakeholders.

30

In the sol
stakehold

In the en
working:

lution area of
ders:

Understand

Shape the sy
current and e
produced.

Implement th
This includes

Test the Syst

Deploy the S

Operate the

ndeavor area

Prepare to d
the work.

Coordinate A
planning of th

Support the

Track Progre

Stop the Wor

f concern the

the Requirem

ystem: Shape
expected futu

he System: B
s bug fixing an

tem: Verify tha

System: Take t

System: Supp

a of concern t

do the Work:

Activity: Co-
he work, and a

Team: Help th

ess: Measure

rk: Shut-down

Figure 5 –

team has to d

ments: Establi

 the system s
re demands.

Build a system
nd unit testing

at the system

the tested syst

port the use of

the team has

Set up the tea

-ordinate and
adding any ad

he team memb

and assess the

n the software

– The Kerne

develop an app

ish a shared un

so that it is e
This includes

m by implemen
g

produced mee

tem and make

f the software

to be formed

am and its wo

direct the te
dditional resou

mbers to help th

e progress ma

e engineering

el Activity S

propriate solu

nderstanding o

easy to develo
s the overall

nting, testing a

ets the stakeho

e it available fo

system in the

d and progres

orking environ

eam’s work. T
urces needed t

hemselves, co

de by the team

endeavor and

paces

tion to exploi

of what the sy

op, change an
design and ar

and integratin

olders’ require

or use outside

e live environm

ss the work i

nment. Unders

This includes
o complete th

llaborate and

m.

the handover

 Ess

it the opportun

ystem to be pr

nd maintain, a
architecting of

ng one or mor

ements.

e the developm

ment.

in-line with th

stand and com

s all on-going
he formation o

improve their

r of the team’s

sence, Version

nity and satisf

roduced must

and can cope
f the system

e system elem

ment team.

he agreed wa

mmit to compl

g planning an
of the team.

r way of work

s responsibiliti

n 1.0

fy the

do.

e with
to be

ments.

ay-of-

leting

nd re-

king.

ies.

Essence,

8.1.6
The kern
key comp

In the cu
technical
requires t

In the so
software

In the en
following

Each com
summariz
and the h

, Version 1.0

Comp
nel also provid
petencies need

ustomer area
l aspects of th
the following

Stakeholder
the needs of o

lution area of
system that fu

Analysis: Th
needs, and tra

Development
following the

Testing: This
the requireme

ndeavor area
g competencie

Leadership:
successful con

Management

mpetency has
zed in Table 7

highest in the l

petencies
des a set of co
ded to do softw

a of concern t
heir chosen do
competencies

Representat
other stakehol

f concern the
ulfils them. Th

his competenc
ansform them

t: This comp
e standards and

s competency
ents.

of concern th
es to be availa

This compet
nclusion to th

t: This compe

s five levels
7. The table r
last row.

s: The A
ompetencies th
ware engineer

Figure 6

the team has
omain and hav
s to be availab

ion: This com
ders, and accu

team has to b
his requires th

cy encapsulate
into an agreed

petency encap
d norms agree

encapsulates

he team has to
able to the team

tency enables
heir work and t

etency encapsu

of achievem
reads from top

bilities N
hat compleme
ring. The kern

– The Kern

to be able to
ave the ability
ble to the team

mpetency enc
urately represe

be able to capt
he following c

es the ability
d and consiste

psulates the a
ed by the team

the ability to

o be able to o
m:

s a person to
to meet their o

ulates the abil

ment. These a
p to bottom w

Needed
ent the Alphas
nel competenc

nel Compete

o demonstrate
y to accurately
m:

apsulates the
ent their view

ture and analy
competencies t

to understan
ent set of requ

ability to desi
m.

o test a system

organize itself

o inspire and
objectives.

lity to coordin

are standard
with the lowes

 and Activity
cies are shown

ncies

e a clear und
y reflect the v

ability to gat
ws.

yze the requir
to be available

d opportunitie
uirements.

ign and progr

m, verifying th

f and manage

d motivate a

nate, plan and

across all of
st level of com

Spaces to pro
n in Figure 6.

derstanding of
views of their

ther, commun

rements, and b
e to the team:

es and their r

ram effective

hat it is usabl

its work load

group of pe

track the wor

f the kernel
mpetency show

ovide a view o

f the business
stakeholders.

nicate, and ba

build and oper

related stakeh

e software sys

e and that it m

d. This require

ople to achie

rk done by a te

competencies
wn in the firs

 31

of the

s and
. This

alance

rate a

holder

stems

meets

es the

eve a

eam.

s and
st row

32 Essence, Version 1.0

Table 7 – The Generic Competency Levels

Competency Level Brief Description

1 - Assists Demonstrates a basic understanding of the concepts and can follow instructions.

The following describe the traits of a Level 1 individual:

• Understands and conducts his or her self in a professional manner.

• Is able to correctly respond to basic questions within his or her domain.

• Is able to perform most basic functions within the domain.

• Can follow instructions and complete basic tasks.

2 - Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so
far.

The following describe the traits of a Level 2 individual:

• Is able to collaborate with others within the Team

• Is able to satisfy routine demands and simple work requirements.

• Can handle simple challenges with confidence.

• Can handle simple work requirements but needs help in handling any complications
or difficulties.

• Is able to reason about the context and draw sensible conclusions.

3 - Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

The following describe the traits of a Level 3 individual:

• Is able to satisfy most demands and work requirements.

• Is able to speak the domain language with ease and accuracy.

• Is able to communicate and explain his or her work

• Is able to give and receive constructive feedback

• Knows the limits of his or her capability and when to call on more expert advice.

• Works at a professional level with little or no guidance.

4 - Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts.
Can enable others to apply the concepts.

The following describe the traits of a Level 4 individual:

• Is able to satisfy complex demands and work requirements.

• Is able to communicate with others working outside the domain.

• Can direct and help others working within the domain.

• Is able to adapt his or her way-of-working to work well with others, both inside and
outside their domain.

5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

The following describe the traits of a Level 5 individual:

• Has many years of experience and is currently up to date in what is happening

Essence, Version 1.0 33

within the domain.

• Is recognized as an expert by his or her peers.

• Supports others in working on a complex professional level.

• Knows when to innovate or do something different and when to follow normal
procedure.

• Develops innovative and effective solutions to the current challenges within the
domain.

The higher competency levels build upon the lower ones. An individual at level 2 has all the traits of an individual at
level 1 as well as the additional traits required to qualify for level 2. An individual at level 3 has all the traits required at
levels 1, 2 and 3, and so on.

Individuals at levels 1 and 2 have an awareness or basic understanding of the knowledge, skills, and abilities associated
with the competency. However, they do not possess the knowledge, skills, and abilities to perform the competency in
difficult or complex situations and typically can only perform simple routine tasks without direction or other guidance.

Individuals at level 3 and above have mastered this aspect of their profession and can be trusted to integrate into, and
deliver the results required by, the team.

There are many factors that drive up the level of competency required by a team, including:

 The size and complexity of the work.

 The size and distribution of the team.

 The size, complexity and diversity of the stakeholder community.

 The novelty of the solution being produced.

 The technical complexity of the solution.

 The levels of risk facing the team.

8.2 The Customer Area of Concern

8.2.1 Introduction
This area of concern contains everything to do with the actual use and exploitation of the software system to be produced.

Software engineering always involves at least one customer for the software that it produces. The customer perspective
must be integrated into the day-to-day work of the team to prevent an inappropriate solution from being produced.

8.2.2 Alphas
The customer area of concern contains the following Alphas:

 Stakeholders

 Opportunity

8.2.2.1 Stakeholders

Description

Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity, and are the source of the requirements for the software system. They are
involved throughout the software engineering endeavor to support the team and ensure that an acceptable software

34 Essence, Version 1.0

system is produced.

States

Recognized Stakeholders have been identified.
Represented The mechanisms for involving the stakeholders are agreed and the

stakeholder representatives have been appointed.
Involved The stakeholder representatives are actively involved in the work and

fulfilling their responsibilities.
In Agreement The stakeholder representatives are in agreement.
Satisfied for Deployment The minimal expectations of the stakeholder representatives have been

achieved.
Satisfied in Use The system has met or exceeds the minimal stakeholder expectations.

Associations

provide : Opportunity Stakeholders provide Opportunity.

support : Team Stakeholders support Team.

demand : Requirements Stakeholders demand Requirements.

use and consume : Software System Stakeholders use and consume Software System.

Justification: Why Stakeholders?

Stakeholders are critical to the success of the software system and the work done to produce it. Their input and feedback
help shape the software engineering endeavor and the resulting software system.

Progressing the Stakeholders

During the development of a software system the stakeholders progress through several state changes. As shown in
Figure 5, they are recognized, represented, involved, in agreement, satisfied for deployment and satisfied in use. These
states focus on the involvement and satisfaction of the stakeholders, from their recognition as stakeholders through their
representation in the development activities to their satisfaction with the use of the resulting software system. They
communicate the progression of the relationship with the stakeholders who are either directly involved in the software
engineering endeavor or support it by providing input and feedback.

Essence,

As indica
system a
developm

The num
example
the devel

It is not
critical to
involved
the level
maintain

It is not
represent
group, or
make the
responsib
engineeri

Once the
represent
succeed.
authority

The team
software
their resp
need to b
represent
engineeri

, Version 1.0

ated in Figure
are recognized
ment and opera

mber and type
the nature an

lopment organ

always possib
o the success
in the work. T
of impact the
the software

t enough to d
ted. This mean
r in some case
e contribution
bilities within
ing endeavor r

e stakeholder
tatives take on
Acting as in

y to carry out t

m needs to m
system. Here

ponsibilities. T
be done to the
tatives make
ing endeavor

e 7, the first
d. This mean
ation of the so

e of stakehold
d complexity

nization will b

ble to have a
s of the softw
Their selectio
e software sys
system should

determine wh
ns that there w
es one stakeho
n of the stak
the software

runs the risk t

representativ
n their agreed

ntermediaries
their responsib

make sure tha
e, the stakeho
They provide
e software sys

sure that th
is fixed from

Figure 7 –

thing to do is
s that all the
oftware system

der groups to
of the system

both affect the

all the stakeho
ware engineer
n depends on
stem has on th
d always be id

hich stakehold
will be one or
older represen
keholder repre

engineering e
that some of it

ves have been
d to responsib
between thei

bilities on beh

at the stakeho
older represen
feedback and

stem, or when
he changes ar

the beginning

The states o

s to make sur
 different gro

m are identifie

be identified
m and its targe

 number of sta

older groups
ring endeavor

n the level of i
hem. The stak

dentified.

der groups n
r more stakeho
ntative selected
esentatives as
endeavor. Wit
ts important a

n appointed,
bilities and fe
ir respective
half of their re

older represen
ntatives assist

take part in d
n the stakehold
are relevant a
g. Its requirem

of the Stake

re that the sta
oups of stakeh
ed.

d can vary co
et operating en
akeholder gro

involved. Foc
r. It is these
mpact they ha
keholder grou

need to be in
older represen
d to represent
s effective as
thout defining

aspects may ge

the represent
el fully comm
stakeholder g
spective stake

ntatives are a
in the softwa

decision makin
der group they
and promptly
ments are cont

eholders

akeholders aff
holders that a

onsiderably fr
nvironment, an
ups affected b

cus should be
stakeholder g

ave on the suc
ups that assure

nvolved, they
ntatives selecte

all stakeholde
s possible, th
g clear roles a
et unintentiona

ted state is a
mitted to helpi
groups and th
eholder groups

actively involv
are engineerin
ng in a timely
y represent su

y communicat
inuously evol

fected by the
are, or will b

rom one syste
and the nature
by the system

e primarily on
groups that n
ccess of the so
e quality, fund

will also ne
ted to represen
der groups, and
hey must kno
and responsibi
ally omitted o

achieved. Her
ping the new s
he team, they
s.

ved in the de
ng endeavor i
y manner. In c
uggests chang
ted to the te
lving as the op

proposed soft
be, affected b

em to another
and complex

.

n the ones tha
need to be dir
oftware system
d, use, suppor

eed to be act
nt each stakeh
d help the team
ow their roles
ilities, the soft
or neglected.

re, the stakeh
software syste
y are now gr

evelopment o
in accordance
ases when cha

ges, the stakeh
eam. No soft
pportunity cha

 35

ftware
by the

r. For
xity of

at are
rectly
m and
rt and

tively
holder
m. To
s and
ftware

holder
em to
ranted

of the
e with
anges

holder
ftware
anges

36 Essence, Version 1.0

or new limitations are identified. This requires the stakeholder representatives to be actively involved throughout the
development and to be responsive to all the changes affecting their stakeholder group.

It may not always be possible to meet all the expectations of all the stakeholders. Hence, compromises will have to be
made. In the in agreement state the stakeholder representatives have identified and agreed upon a minimal set of
expectations which have to be met before the system is deployed. These expectations will be reflected in the
requirements agreed by the stakeholder representatives.

Throughout the development the stakeholder representatives provide feedback on the system’s state from the perspective
of their stakeholder groups. Once the minimal expectations of the stakeholder representatives have been achieved by the
new software system they will confirm that it is ready for operational use and the satisfied for deployment state is
achieved.

Finally, the stakeholders start to use the operational system and provide feedback on whether or not they are truly
satisfied with what has been delivered. Achieving the satisfied in use state indicates that the new system has been
successfully deployed and is delivering the expected benefits for all the stakeholder groups.

Understanding the current state of the stakeholders and how they are progressing towards being satisfied with the new
system is a critical part of any software engineering endeavor.

Checking the progress of the Stakeholders

To help assess the state and progress of the stakeholders, the following checklists are provided:

Table 8 – Checklist for Stakeholders

State Checklist

Recognized All the different groups of stakeholders that are, or will be, affected by the development and
operation of the software system are identified.

There is agreement on the stakeholder groups to be represented. At a minimum, the
stakeholders groups that fund, use, support, and maintain the system have been considered.

The responsibilities of the stakeholder representatives have been defined.

Represented The stakeholder representatives have agreed to take on their responsibilities.

The stakeholder representatives are authorized to carry out their responsibilities.

The collaboration approach among the stakeholder representatives has been agreed.

The stakeholder representatives support and respect the team's way of working.

Involved The stakeholder representatives assist the team in accordance with their responsibilities.

The stakeholder representatives provide feedback and take part in decision making in a
timely manner.

The stakeholder representatives promptly communicate changes that are relevant for their
stakeholder groups.

In Agreement The stakeholder representatives have agreed upon their minimal expectations for the next
deployment of the new system.

The stakeholder representatives are happy with their involvement in the work.

The stakeholder representatives agree that their input is valued by the team and treated with
respect.

The team members agree that their input is valued by the stakeholder representatives and
treated with respect.

The stakeholder representatives agree with how their different priorities and perspectives are

Essence, Version 1.0 37

being balanced to provide a clear direction for the team.

Satisfied
for Deployment

The stakeholder representatives provide feedback on the system from their stakeholder group
perspective.

The stakeholder representatives confirm that the system is ready for deployment.

Satisfied in Use Stakeholders are using the new system and providing feedback on their experiences.

The stakeholders confirm that the new system meets their expectations.

8.2.2.2 Opportunity

Description

Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the team’s
shared understanding of the stakeholders’ needs, and helps shape the requirements for the new software system by
providing justification for its development.

States

Identified A commercial, social or business opportunity has been identified that could
be addressed by a software-based solution.

Solution Needed The need for a software-based solution has been confirmed.
Value Established The value of a successful solution has been established.
Viable It is agreed that a solution can be produced quickly and cheaply enough to

successfully address the opportunity.
Addressed A solution has been produced that demonstrably addresses the opportunity.
Benefit Accrued The operational use or sale of the solution is creating tangible benefits.

Associations

focuses : Requirements Opportunity focuses Requirements.

Justification: Why Opportunity?

Most software engineering work is initiated by the stakeholders that own and use the software system. Their inspiration is
usually some combination of problems, suggestions and directives, which taken together provide the development team
with an opportunity to create a new or improved software system. Occasionally it is the development team itself that
originates the opportunity that they must then sell to the other stakeholders to get funding and support. In many cases the
software system only provides part of the solution needed to exploit the opportunity and the development team must co-
ordinate their work with other teams to ensure that they actually deliver a useful, and deployable system.

In all cases understanding the opportunity is an essential part of software engineering, as it enables the team to:

 Identify and motivate their stakeholders.

 Understand the value that the software system offers to the stakeholders.

 Understand why the software system is being developed.

 Understand how the success of the deployment of the software system will be judged.

 Ensure that the software system effectively addresses the needs of all the stakeholders.

It is the opportunity that unites the stakeholders and provides the motivation for producing a new or updated software
system. It is by understanding the opportunity that you can identify the value, and the desired outcome that the
stakeholders hope to realize from the use of the software system either alone or as part of a broader business, or technical
solution.

38

Progres

During th
Figure 8,
indicate
software
(2) when
opportun
about the
when a s
benefit ha

As show
somethin
understoo
endeavor
takes the
or innova

Different
software

to increas
and any u
investme

Once the
determin
importan

ssing the Op

he developme
, these are id
significant po
system throu

n the opportu
nity’s value is
e cost of creat
solution is av
as been accru

wn in Figure
ng, make some
od by the tea
rs the opportu
form of an id

ative technolo

t stakeholders
system produ

se the team’s
underlying pr

ent is generate

e opportunity h
e the value t

nt step in deter

pportunity

ent of a softw
dentified, solut
oints in the te
ugh to the accr
unity has bee
established an

ting and using
vailable that d
ed from the u

8, the oppor
e money, or e
m it is unlike

unity is usuall
dea for a way
ogy.

 will see the o
uced to addres

understanding
roblems is ess
d.

has been analy
that the soluti
rmining wheth

are system th
tion needed, v
am’s progress
rual of benefit
en analyzed a
nd the desired
g the proposed
demonstrably
se of the resul

rtunity is firs
even to change
ely that they w
y identified b
to improve th

opportunity in
s it. It is impo

Figure 8 –

g of the oppor
sential to ensu

yzed, and it h
ion is expecte
her or not to p

he opportunity
value establis
sion of the op
t from its use
and it has b

d outcomes re
d solution that
shows that t

lting solution.

st identified.
e the world. R
will produce

by the stakeho
he current way

n different wa
ortant that the

The states

rtunity. Analy
ure that an ap

has been agree
ed to generat
proceed with w

y progresses th
shed, viable, a
pportunity fro
. They indicat
een confirme
quired of the
t it is clear th
the opportunit
.

The opportun
Regardless of
an appropriat

olders that ow
y of doing som

ays, and they
different stak

of the Oppo

yzing the oppo
ppropriate syst

ed that a softw
te. Progressin
work to addre

hrough severa
addressed, an

om the initial
te (1) when th
ed that a solu
solution are c
at the pursuit
ty has been a

nity could be
the kind of o

te software sy
wn and use the
mething, incre

will be lookin
eholder persp

ortunity

ortunity to und
tem is produc

ware-based sol
g the opportu
ss the opportu

 Ess

al state change
nd benefit acc
formulation o

he opportunity
ution is need

clear, (4) when
of the opport

addressed, and

e to entertain
opportunity pr
ystem. For so
e software sys
ease market sh

ng for differen
pectives are un

derstand the s
ced and a sati

lution is need
unity to value
unity as it mea

sence, Version

es. As present
crued. These
of an idea to
y is first ident
ded, (3) when
n enough is kn
tunity is viabl
d finally (6)

n somebody,
esented, if it i
ftware engine
stem, and typi
hare or apply a

nt results from
nderstood and

stakeholder’s n
sfactory retur

ed, it is possib
e established
ans that the pr

n 1.0

ted in
states
use a
tified,
n the
nown
le, (5)
when

learn
is not

eering
ically
a new

m any
used

needs
rn-on-

ble to
is an

rize is

Essence, Version 1.0 39

clear to everyone involved.

The next step is to establish the viability of the opportunity. An opportunity is viable when a solution can be envisaged
that it is feasible to develop and deploy within acceptable time and cost constraints. Although addressing the opportunity
may be a very valuable thing to do it is probably not a good idea if the resources expended will be greater than the
benefits accrued.

Once it has been agreed that the opportunity is viable then the team can be confident that a software system can be
produced that will not just address the opportunity but will be acceptable to all of the stakeholders. As releases of the
software system become available their viability must be continuously checked to ensure that they meet the needs of the
stakeholders. After a suitable software system has been made available then, as far as the development team is concerned,
the opportunity has been addressed. It is now up to the users of the system to actually use it to generate value and make
sure that for this opportunity there is benefit accrued.

It is important that the team understands the current state of the opportunity so that they can ensure that an appropriate
software system is developed, one that will satisfy the stakeholders and result in a tangible benefit being accrued.

Checking the Progress of the Opportunity

To help assess the state of the opportunity and the progress being made towards its successful exploitation, the following
checklists are provided:

Table 9 – Checklist for Opportunity

State Checklist

Identified An idea for a way of improving current ways of working, increasing market share or
applying a new or innovative software system has been identified.

At least one of the stakeholders wishes to make an investment in better understanding the
opportunity and the value associated with addressing it.

The other stakeholders who share the opportunity have been identified.

Solution Needed The stakeholders in the opportunity and the proposed solution have been identified.

The stakeholders' needs that generate the opportunity have been established.

Any underlying problems and their root causes have been identified.

It has been confirmed that a software-based solution is needed.

At least one software-based solution has been proposed.

Value Established The value of addressing the opportunity has been quantified either in absolute terms or in
returns or savings per time period (e.g. per annum).

The impact of the solution on the stakeholders is understood.

The value that the software system offers to the stakeholders that fund and use the software
system is understood.

The success criteria by which the deployment of the software system is to be judged are
clear.

The desired outcomes required of the solution are clear and quantified.

Viable A solution has been outlined.

The indications are that the solution can be developed and deployed within constraints.

The risks associated with the solution are acceptable and manageable.

The indicative (ball-park) costs of the solution are less than the anticipated value of the

40 Essence, Version 1.0

opportunity.

The reasons for the development of a software-based solution are understood by all members
of the team.

It is clear that the pursuit of the opportunity is viable.

Addressed A usable system that demonstrably addresses the opportunity is available.

The stakeholders agree that the available solution is worth deploying.

The stakeholders are satisfied that the solution produced addresses the opportunity.

Benefit Accrued The solution has started to accrue benefits for the stakeholders.

The return-on-investment profile is at least as good as anticipated.

8.2.3 Activity Spaces
The customer area of concern contains four activity spaces that cover the discovery of the opportunity and the
involvement of the stakeholders:

8.2.3.1 Explore Possibilities

Description

Explore the possibilities presented by the creation of a new or improved software system. This includes the analysis of
the opportunity to be addressed and the identification of the stakeholders.

Explore possibilities to:

 Enable the right stakeholders to be involved.

 Understand the stakeholders’ needs.

 Identify opportunities for the use of the software system.

 Understand why the software system is needed.

 Establish the value offered by the software system.

Input: None

Completion Criteria: Stakeholders::Recognized, Opportunity::Identified, Opportunity::Solution Needed,
Opportunity::Value Established.

8.2.3.2 Understand Stakeholder Needs

Description

Engage with the stakeholders to understand their needs and ensure that the right results are produced. This includes
identifying and working with the stakeholder representatives to progress the opportunity.

Understand stakeholder needs to:

 Ensure the right solution is created.

 Align expectations.

 Collect feedback and generate input.

 Ensure that the solution produced provides benefit to the stakeholders.

Input: Stakeholders, Opportunity, Requirements, Software System

Essence, Version 1.0 41

Completion Criteria: Stakeholders::Represented, Stakeholders::Involved, Stakeholders::In Agreement,
Opportunity::Viable

8.2.3.3 Ensure Stakeholder Satisfaction

Description

Share the results of the development work with the stakeholders to gain their acceptance of the system produced and
verify that the opportunity has been successfully addressed.

Ensure the satisfaction of the stakeholders to:

 Get approval for the deployment of the system.

 Validate that the system is of benefit to the stakeholders.

 Validate that the system is acceptable to the stakeholders.

 Independently verify that the system delivered is the one required.

 Confirm the expected benefit that the system will provide.

Input: Stakeholders, Opportunity, Requirements, Software System
Completion Criteria: Stakeholders::Satisfied for Deployment, Opportunity::Addressed

8.2.3.4 Use the System

Description

Use the system in a live environment to benefit the stakeholders.

Use the system to:

 Generate measurable benefits.

 Gather feedback from the use of the system.

 Confirm that the system meets the expectations of the stakeholders.

 Establish the return-on-investment for the system.

Input: Stakeholders, Opportunity, Requirements, Software System
Completion Criteria: Stakeholders::Satisfied in Use, Opportunity::Benefit Accrued

8.2.4 Competencies

8.2.4.1 Stakeholder Representation

This competency encapsulates the ability to gather, communicate and balance the needs of other stakeholders, and
accurately represent their views.

The stakeholder representation competency is the empathic ability to stand in for and accurately reflect the opinions,
rights and obligations of other stakeholders.

People with this competency help the team to:

 Understand the business opportunity

 Understand the complexity and needs of the customers, users and other stakeholders

 Negotiate and prioritize the requirements

 Interact with the stakeholders and developers about the solution to be developed

 Understand how well the system produced addresses the stakeholders’ needs

42 Essence, Version 1.0

Essential skills include:

 Negotiation

 Facilitation

 Networking

 Good written and verbal communication skills

 Empathy

This competency can be provided by an on-site customer, a product manager or a group of people from the business
organization.

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so

far.
Level 3 – Masters Able to apply the concepts in most contexts and has the experience to work without

supervision.
Level 4 – Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts. Can

enable others to apply the concepts.
Level 5 – Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Stakeholder Representation?

When developing software it is essential to interact with the stakeholder community. However, it is impossible to directly
interact with all of the stakeholders all of the time. This leads to a small number of stakeholders being selected to
represent their particular stakeholder communities. For the smooth running of the team it is essential that the people
selected have the competency needed to represent their stakeholder communities. The stakeholder representation
competency encapsulates the abilities needed to be able to represent and act on behalf of others within a software
engineering endeavor.

8.3 The Solution Area of Concern

8.3.1 Introduction
This area of concern covers everything to do with the specification and development of the software system.

The goal of software engineering is to develop working software as part of the solution to some problem. Any method
adopted must describe a set of practices to help the team produce good quality software in a productive and collaborative
fashion.

8.3.2 Alphas
The solution area of concern contains the following Alphas:

 Requirements

 Software System

8.3.2.1 Requirements

Description

Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

Essence, Version 1.0 43

It is important to discover what is needed from the software system, share this understanding among the stakeholders and
the team members, and use it to drive the development and testing of the new system.

States

Conceived The need for a new system has been agreed.
Bounded The purpose and theme of the new system are clear.
Coherent The requirements provide a consistent description of the essential

characteristics of the new system.
Acceptable The requirements describe a system that is acceptable to the stakeholders.
Addressed Enough of the requirements have been addressed to satisfy the need for a

new system in a way that is acceptable to the stakeholders.
Fulfilled The requirements that have been addressed fully satisfy the need for a new

system.

Associations

scopes and constrains : Work The Requirements scope and constrain the Work.

Justification: Why Requirements?

The requirements capture what the stakeholders want from the system. They define what the system must do, but not
necessarily how it must do it. They describe the value the system will provide by addressing the opportunity and how the
opportunity will be pursued by the production of a new software system. They also scope and constrain the work by
defining what needs to be achieved.

The requirements are captured as a set of requirement items. The requirement items can be communicated and recorded
in various forms and at various levels of detail. They may be communicated explicitly as a set of extensive requirements
documents or more tacitly in the form of conversations and brain-storming sessions. The requirement items themselves
are always documented and tracked. The documentation can take many forms and be as brief as a one-line user story or
as comprehensive as a use case.

As the development of the system proceeds, the requirements evolve and are constantly re-prioritized and adjusted to
reflect the changing needs of the stakeholders. Much that is implicit at first is made explicit later by adding more detailed
requirement items such as well-defined quality characteristics and test cases. This allows the requirements to act as a
verifiable specification for the software system. Regardless of how the requirement items are captured it is essential that
the software system produced can be shown to successfully fulfill the requirements. This is why requirements play such
an essential role in the testing of the system. As well as providing a definition of what needs to be achieved, they also
allow tracking of what has been achieved. As the testing of each requirement item is completed it can be individually
checked off as done, and the requirements as a whole can be looked at to see if the system produced sufficiently fulfills
the requirements and whether or not work on the system is finished.

It is important that the overall state of the requirements is understood as well as the state of the individual requirement
items. If the overall state of the requirements is not understood then it will be impossible to 1) tell when the system is
finished, and 2) judge whether or not an individual requirement item is in the scope of the system.

44 Essence, Version 1.0

Figure 9 – The states of the Requirements

Progressing the Requirements

During the development of a software system the requirements progress through several state changes. As shown in
Figure 9, they are conceived, bounded, coherent, acceptable, addressed, and fulfilled. These states focus on the evolution
of the team’s understanding of what the proposed system must do, from the conception of a new set of requirements as an
initial idea for a new software system through their development to their fulfillment by the provision of a usable software
system.

As shown in Figure 9, the requirements start in the conceived state when the need for a new software system has been
agreed. The stakeholders can hold differing views on the overall meaning of the requirements. However, they all agree
that there is a need for a new software system and a clear opportunity to be pursued.

Before too much time is spent collecting and detailing the individual requirement items the requirements as a whole must
be bounded. To bound the requirements, the overall scope of the new system, the aspects of the opportunity to be
addressed, and the mechanisms for managing and accepting new or changed requirement items all need to be established.
In the bounded state there may still be inconsistencies or ambiguities between the individual requirement items.
However, the stakeholders now have a shared understanding of the purpose of the new system and can tell whether or not
a request qualifies as a requirement item. They also understand the mechanisms to be used to evolve the requirement
items and remove the inconsistencies. Once the requirements are bounded there is a shared understanding of the scope of
the new system and it is safe to start implementing the most important requirement items.

Further elicitation, refinement, analysis, negotiation, demonstration and review of the individual requirement items leads
to a coherent set of requirements, one that clearly defines the essential characteristics of the new system. The requirement
items continue to evolve as more is learnt about the new system and its impact on its stakeholders and environment. No
matter how much the requirement items change, it is essential that they stay within the bounds of the original concept and
that they remain coherent at all times.

Essence, Version 1.0 45

The continued evolution of the requirements leads to the capture of an acceptable set of requirements, one that defines a
system that will be acceptable to the stakeholders as, at least, an initial solution. The requirements may only describe a
partial solution; however the solution described is of sufficient value that the stakeholders would accept it for operational
use. The number of requirement items that need to be agreed for the requirements to be acceptable to the stakeholders can
vary from one to many. When changing a mature system it may be acceptable to just address one important requirement
item. When building a replacement system a large number of requirement items will need to be addressed.

As the individual requirement items are implemented and a usable system is evolved, there will come a time when
enough requirements have been implemented for the new system to be worth releasing and using. In the addressed state
the amount of requirements that have been addressed is sufficient for the resulting system to provide clear value to the
stakeholders. If the resulting system provides a complete solution then the requirements may advance immediately to the
fulfilled state.

Usually, when the addressed state is achieved the resulting system provides a valuable but incomplete solution. To fully
address the opportunity, additional requirement items may have to be implemented. The shortfall may be because an
incremental approach to the delivery of the system was selected, or because the missing requirements were difficult to
identify before the system was made available for use.

In the fulfilled state enough of the requirement items have been implemented for the stakeholders to agree that the
resulting system fully satisfies the need for a new system, and that there are no outstanding requirement items preventing
the system from being considered complete.

Understanding the current and desired state of the requirements can help everyone understand what the system needs to
do and how close to complete it is.

Checking the Progress of the Requirements

To help assess the state of the requirements and the progress being made towards their successful conclusion, the
following checklists are provided:

Table 10 – Checklist for Requirements

State Checklist

Conceived The initial set of stakeholders agrees that a system is to be produced.

The stakeholders that will use the new system are identified.

The stakeholders that will fund the initial work on the new system are identified.

There is a clear opportunity for the new system to address.

Bounded The stakeholders involved in developing the new system are identified.

The stakeholders agree on the purpose of the new system.

It is clear what success is for the new system.

The stakeholders have a shared understanding of the extent of the proposed solution.

The way the requirements will be described is agreed upon.

The mechanisms for managing the requirements are in place.

The prioritization scheme is clear.

Constraints are identified and considered.

Assumptions are clearly stated.

Coherent The requirements are captured and shared with the team and the stakeholders.

The origin of the requirements is clear.

The rationale behind the requirements is clear.

46 Essence, Version 1.0

Conflicting requirements are identified and attended to.

The requirements communicate the essential characteristics of the system to be delivered.

The most important usage scenarios for the system can be explained.

The priority of the requirements is clear.

The impact of implementing the requirements is understood.

The team understands what has to be delivered and agrees to deliver it.

Acceptable The stakeholders accept that the requirements describe an acceptable solution.

The rate of change to the agreed requirements is relatively low and under control.

The value provided by implementing the requirements is clear.

The parts of the opportunity satisfied by the requirements are clear.

The requirements are testable.

Addressed Enough of the requirements are addressed for the resulting system to be acceptable to the
stakeholders.

The stakeholders accept the requirements as accurately reflecting what the system does and
does not do.

The set of requirement items implemented provide clear value to the stakeholders.

The system implementing the requirements is accepted by the stakeholders as worth making
operational.

Fulfilled The stakeholders accept the requirements as accurately capturing what they require to fully
satisfy the need for a new system.

There are no outstanding requirement items preventing the system from being accepted as
fully satisfying the requirements.

The system is accepted by the stakeholders as fully satisfying the requirements.

8.3.2.2 Software System

Description

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

A software system can be part of a larger software, hardware, business or social solution.

States

Architecture Selected An architecture has been selected that addresses the key technical risks and
any applicable organizational constraints.

Demonstrable An executable version of the system is available that demonstrates the
architecture is fit for purpose and supports testing.

Usable The system is usable and demonstrates all of the quality characteristics of an
operational system.

Ready The system (as a whole) has been accepted for deployment in a live
environment.

Operational The system is in use in a live environment.
Retired The system is no longer supported.

Essence, Version 1.0 47

Associations

helps to address : Opportunity Software System helps to address Opportunity.

fulfills : Requirements Software Systems fulfills Requirements.

Justification: Why Software System?

Essence uses the term software system rather than software because software engineering results in more than just a piece
of software. Whilst the value may well come from the software, a working software system depends on the combination
of software, hardware and data to fulfill the requirements.

Progressing the Software System

The life-cycle of a software system is hard to define as there can be many releases of a software system. These releases
can be worked on and used in parallel. For example one team can be working on the development of release 3, whilst
another team is making small changes to release 2, and a third team is providing support for those people still using
release 1. If we treat this software system as one entity what state is it in?

To keep things simple, Essence treats each major release as a separate software system; one that is built, released,
updated, and eventually retired. A major release encompasses significant changes to the purpose, usage, or architecture of
a software system. It can encompass many minor releases including internal releases produced for testing purposes, and
external releases produced to support incremental delivery or bug fixes. In the example above the second team would be
producing a series of minor releases (2.1, 2.2, 2.3, etc.) of their software system to allow the delivery of their small
changes.

During its development a software system progresses through several state changes. As shown in Figure 8, they are
architecture selected, demonstrable, usable, ready, operational and retired. These states provide points of stability on a
software system’s journey from its conception to its eventual retirement indicating (1) when the architecture is selected,

Figure 10 – The states of the Software System

48 Essence, Version 1.0

(2) when a demonstrable system is produced to prove the architecture and enable testing to start, (3) when the system is
extended and improved so that it becomes usable, (4) when the usable system is enhanced until it is accepted as ready for
deployment, (5) when the system is made available to the stakeholders who use it and made operational, and finally, (6)
when the system itself is retired and its support is withdrawn. These states can be applied to the initial release of the
software system or any subsequent modification or replacement.

As indicated in Figure 10, the first thing to do for any major software system release is to make sure that there is an
appropriate architecture available; one that complies with any applicable organizational constraints and addresses the key
technical risks facing the new system. Achieving this may require the creation of a brand new architecture, the
modification of an existing architecture, the selection of an existing architecture, or the simple re-use of whatever is
already in place. Regardless of the approach taken, the result is that the system progresses to the architecture selected
state.

Once the architecture had been selected, it must be shown to be fit-for-purpose by building and testing a demonstrable
version of the system. It is not sufficient to just present a set of rolling screen-shots or a stand-alone version of a multi-
user system. The system needs to be truly demonstrable exercising all of the significant characteristics of the selected
architecture. It must also be capable of supporting both functional and non-functional testing.

The demonstrable system is then evolved to become usable by adding more functionality, and fixing defects. Once the
system has achieved the usable state, it has all the qualities desired of an operational system. If it implements a sufficient
amount of the requirements, if it provides sufficient business value, and if there is an appropriate window of opportunity
for its deployment, then it can be considered to be ready for operational use.

Although, a useable system has the potential to be an operational system, there are still a few essential steps to be
performed before it is ready. The system has to be accepted for use by the stakeholders, and it has to be prepared for
deployment in the live environment. In this state, the system is typically supplemented with installation guidance,
training materials and actual training for system operation.

The system is made operational when it is installed for real use within the live environment. It is now being used to
generate value and provide benefit to its stakeholders.

Even after the software system has been made operational, development work can still continue. This may be as part of
the plans for the incremental delivery of the system or, as is more common, a response to defects and problems occurring
during the deployment and operation of the system. Support and maintenance continue until the software system is
retired and its support is withdrawn. This may be because 1) the software system has been completely replaced by a later
generation, 2) the software system no longer has any users or, 3) it does not make business sense to continue to support it.

During the development of a major release many minor releases are often produced. For example, many teams using an
iterative approach produce a new release during every iteration whilst they keep their software system continuously in a
usable, and therefore potentially shippable, state. It is then the stakeholder representatives who decide whether it is ready
to be made operational. Obviously, this approach is not always possible, particularly if major architectural changes are
required as these often render the system unusable for a significant period of time.

Understanding the current and desired states of a software system helps everyone understand when a system is ready,
what kinds of changes can be realistically made to the system, and what kinds of work should be left to a later generation
of the software system.

Checking the Progress of the Software System

To help assess the state of a software system and the progress being made towards its successful operation, the following
checklist items are provided:

Table 11 – Checklist for Software System

State Checklist

Architecture Selected The criteria to be used when selecting the architecture have been agreed on.

Hardware platforms have been identified.

Programming languages and technologies to be used have been selected.

Essence, Version 1.0 49

System boundary is known.

Significant decisions about the organization of the system have been made.

Buy, build and reuse decisions have been made.

Demonstrable Key architectural characteristics have been demonstrated.

The system can be exercised and its performance can be measured.

Critical hardware configurations have been demonstrated.

Critical interfaces have been demonstrated.

The integration with other existing systems has been demonstrated.

The relevant stakeholders agree that the demonstrated architecture is appropriate.

Usable The system can be operated by stakeholders who use it.

The functionality provided by the system has been tested.

The performance of the system is acceptable to the stakeholders.

Defect levels are acceptable to the stakeholders.

The system is fully documented.

Release content is known.

The added value provided by the system is clear.

Ready Installation and other user documentation are available.

The stakeholder representatives accept the system as fit-for-purpose.

The stakeholder representatives want to make the system operational.

Operational support is in place.

Operational The system has been made available to the stakeholders intended to use it.

At least one example of the system is fully operational.

The system is fully supported to the agreed service levels.

Retired The system has been replaced or discontinued.

The system is no longer supported.

There are no “official” stakeholders who still use the system.

Updates to the system will no longer be produced.

8.3.3 Activity Spaces
The solution area of concern contains six activity spaces that cover the capturing of the requirements and the
development of the software system.

8.3.3.1 Understand the Requirements

Description

Establish a shared understanding of what the system to be produced must do.

Understand the requirements to:

50 Essence, Version 1.0

 Scope the system.

 Understand how the system will generate value.

 Agree on what the system will do.

 Identify specific ways of using and testing the system.

 Drive the development of the system.

Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Completion Criteria: Requirements::Conceived, Requirements::Bounded, Requirements::Coherent

8.3.3.2 Shape the System

Description

Shape the system so that it is easy to develop, change and maintain, and can cope with current and expected future
demands. This includes the overall design and architecting of the system to be produced.

Shape the system to:

 Structure the system and identify the key system elements.

 Assign requirements to elements of the system.

 Ensure that the architecture is suitably robust and flexible.

Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Completion Criteria: Requirements::Sufficient, Software System::Architecture Selected

8.3.3.3 Implement the System

Description

Build a system by implementing, testing and integrating one or more system elements. This includes bug fixing and unit
testing.

Implement the system to:

 Create a working system.

 Develop, integrate and test the system elements.

 Increase the number of requirements implemented.

 Fix defects.

 Improve the system

Input: Requirements, Software System, Way-of-Working
Completion Criteria: Software System::Demonstrable, Software System::Usable, Software System::Ready

8.3.3.4 Test the System

Description

Verify that the system produced meets the stakeholders’ requirements.

Test the system to:

 Verify that the software system matches the requirements

 Identify any defects in the software system.

Input: Requirements, Software System, Way-of-Working

Essence, Version 1.0 51

Completion Criteria: Requirements::Sufficient, Requirements::Fulfilled, Software System::Demonstrable, Software
System::Usable, Software System::Ready

8.3.3.5 Deploy the System

Description

Take the tested system and make it available for use outside the development team.

Deploy the system to:

 Package the software system up for delivery to the live environment.

 Make the software system operational.

Input: Stakeholders, Software System, Way-of-Working
Completion Criteria: Software System::Operational

8.3.3.6 Operate the System

Description

Support the use of the software system in the live environment.

Operate the system to:

 Maintain service levels.

 Support the stakeholders who use the system.

 Support the stakeholders who deploy, operate, and help support the system.

Input: Stakeholders, Opportunity, Requirements, Software System, Way-of-Working
Completion Criteria: Software System::Retired

8.3.4 Competencies

8.3.4.1 Analysis

Description

This competency encapsulates the ability to understand opportunities and their related stakeholder needs, and transform
them into an agreed and consistent set of requirements.

The analysis competency is the deductive ability to understand the situation, context, concepts and problems, identify
appropriate high-level solutions, and evaluate and draw conclusions by applying logical thinking.

People with the analytical competency help the team to:

 Identify and understand needs and opportunities.

 Get to know the root causes of the problems

 Capture, understand and communicate requirements.

 Create and agree on specifications and models.

 Visualize solutions and understand their impact.

Essential skills include:

 Verbal and written communication

 Ability to observe, understand, and record details

52 Essence, Version 1.0

 Agreement facilitation

 Requirements capture

 Ability to separate the whole into its component parts

 Ability to see the whole by looking at what is required

This competency can be provided by the customer representatives, product owners, business analysts, requirement
specialists or developers on the team.

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so

far.
Level 3 – Masters Able to apply the concepts in most contexts and has the experience to work without

supervision.
Level 4 – Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts. Can

enable others to apply the concepts.
Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Analysis?

Analysis is an examination of a system including its environment, its elements, and their relations. It is performed in
order to gather, manage and analyze large and complex amounts of information and data and make sense of it. It is more
than just the separation of a whole into its component parts as it involves the resolution of complex expressions into
simpler or more basic ones, and the clarification of the purpose of a system by an explanation of its use.

When developing software it is essential that the current situation is analyzed and the correct requirements identified for
the new system. The requirements themselves must also be analyzed to make sure that they are, amongst other things,
practical, achievable and appropriately sized to drive the system’s development. The analysis competency encapsulates
the abilities needed to successfully define the system to be built.

8.3.4.2 Development

Description

This competency encapsulates the ability to design and program effective software systems following the standards and
norms agreed by the team.

The development competency is the mental ability to conceive and produce a software system, or one of its elements, for
a specific function or end. It enables a team to produce software systems that meet the requirements.

People with the development competency help the team to:

 Design and code software systems

 Formulate and/or evaluate strategies for choosing an appropriate design pattern or for combining various design
patters

 Design and leverage technical solutions

 Troubleshoot and resolve coding problems

Essential skills include:

 Knowledge of technology

 Programming

 Knowledge of programming languages

 Critical thinking

Essence, Version 1.0 53

 Re-factoring

 Design

This competency can be provided by the programmers, coders, designers or architects on the team.

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so

far.
Level 3 – Masters Able to apply the concepts in most contexts and has the experience to work without

supervision.
Level 4 – Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts.

Can enable others to apply the concepts.
Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Development?

Developing a software system is a complex mental activity requiring the ability to exploit all the knowledge about the
opportunity, stakeholder’s needs, company’s business, the technology used and balance them by creating an appropriate
solution. It requires a combination of talent, experience, knowledge and programming skills in order to develop the right
solution.

The development competency is about solving complex problems and producing effective software systems. It lies in the
observing, the sense-making of and representing the system as others expect it to see it, that is, as effective and functional
and easy to use. All this in turn requires the ability to imagine and visualize code and structure it in a way so that it is
easy to understand and maintain.

8.3.4.3 Testing

Description

This competency encapsulates the ability to test a system, verifying that it is usable and that it meets the requirements.

The testing competency is an observational, comparative, detective and destructive ability that enables the system to be
tested.

People with the testing competency help the team to:

 Test the system

 Create the correct tests to efficiently verify the requirements

 Decide what, when and how to test

 Evaluate whether the system meets the requirements

 Find defects and understand the quality of the system produced.

Essential skills include:

 Keen observation

 Exploratory and destructive thinking

 Inquisitive mind

 Attention to detail

This competency can be provided by specialist individuals or other team members such as customers, users, analysts,
developers or other stakeholders.

54 Essence, Version 1.0

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able	to	apply	the	concepts	in	simple	contexts	by	routinely	applying	the	experience	gained	

so	far.
Level 3 – Masters Able	to	apply	the	concepts	in	most	contexts	and	has	the	experience	to	work	without	

supervision.
Level 4 – Adapts Able	to	apply	judgment	on	when	and	how	to	apply	the	concepts	to	more	complex	contexts.	

Can	enable	others	to	apply	the	concepts.
Level 5 – Innovates A	recognized	expert,	able	to	extend	the	concepts	to	new	contexts	and	inspire	others.

Justification: Why Testing?

When developing software it is essential to test that the system meets the requirements and demonstrate that it is fit for
purpose. The ability to conceive and undertake testing is essential throughout the evolution of a system, and is an
essential complement to the team’s analysis, design and programming capabilities.

The testing competency encapsulates the ability to conceive and execute tests to demonstrate that the system is fit for
purpose, usable, meets one or more of its requirements and constitutes an appropriate solution to the stakeholders needs.

8.4 The Endeavor Area of Concern

8.4.1 Introduction
This area of concern contains everything to do with the team, and the way that they approach their work.

Software engineering is a significant endeavor that typically takes many weeks to complete, affects many different
people (the stakeholders) and involves a development team (rather than a single developer). Any practical method must
describe a set of practices to effectively plan, lead and monitor the efforts of the team.

8.4.2 Alphas
The endeavor area of concern contains the following Alphas:

 Team

 Work

 Way-of-Working

8.4.2.1 Team

Description

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific
software system.

The team plans and performs the work needed to create, update and/or change the software system.

States

Seeded The team’s mission is clear and the know-how needed to grow the team is in
place.

Formed The team has been populated with enough committed people to start the
mission.

Collaborating The team members are working together as one unit.
Performing The team is working effectively and efficiently.
Adjourned The team is no longer accountable for carrying out its mission.

Essence, Version 1.0 55

Associations

produces : Software System Team produces Software System.

performs and plans : Work Team performs and plans Work.

applies : Way-of-Working Team applies Way-of-Working.

Justification: Why Team?

Software engineering is a team sport involving the collaborative application of many different competencies and skills.
The effectiveness of a team has a profound effect on the success of any software engineering endeavor. To achieve high
performance, team members should reflect on how well they work together, and relate this to their potential and
effectiveness in achieving their mission.

Normally a team consists of several people. Occasionally, however, work may be undertaken by a single individual
creating software purely for their own use and entertainment. A team requires at least two people, but the guidance
provided by the Team Alpha can also be used to help single individuals when creating software.

Progressing the Team

Teams evolve during their time together and progress through several state changes. As shown in Figure 9, the states are
seeded, formed, collaborating, performing, and adjourned. They communicate the progression of a software team on the
journey from initial conception to the completion of the mission indicating (1) when the team is seeded and the
individuals start to join the team (2) when the team is formed to start the mission, (3) when the individuals start
collaborating effectively and truly become a team, (4) when the team is performing and achieves a crucial level of
efficiency and productivity, and (5) when the team is adjourned after completing its mission.

As shown in Figure 11, the team is first seeded. This implies defining the mission, deciding on recruitment for the
necessary skills, capabilities and responsibilities, and making sure that the conditions are right for an effective group to
come together. As the team is formed, the people in the group, and those joining it, bring the necessary skills and
experience to the team. The group becomes a team as the people begin to see how they can contribute to the work at
hand. As they discover and take account of each others’ capabilities, they start collaborating effectively and make
progress towards completing their mission.

At its peak of performing, the team shares a way of working, and plays to its strengths to complete its mission effectively
and efficiently. The performing team easily adapts to the changing context and takes appropriate measures. If a number of
people join or leave the team, or the context of the mission changes, it may revert to a previous state. Finally, if the team
has no further goals or missions to complete, it is adjourned.

It is important to understand the current state of the team so that suitable practices can be used to address the issues and
impediments being faced, and to ensure that the team focuses on working effectively and efficiently.

56

Checkin

To help a

State

Seeded

Formed

ng the Progr

assess the state

d

ress of the T

e of a team an

Checklist

The team

Constrain

Mechanis

The comp

Any const

The team'

The level

Required

The team

Governan

Leadershi

Individua

Figure 1

Team

nd its progress

Table

t

mission has b

nts on the team

ms to grow th

position of the

traints on whe

's responsibili

of team comm

competencies

size is determ

nce rules are d

ip model is sel

l responsibilit

11 – The sta

s, the followin

e 12 – Check

been defined i

m's operation a

he team are in

e team is defin

ere and how th

ities are outlin

mitment is cle

s are identified

mined.

defined.

lected.

ties are unders

ates of the T

ng checklists a

klist for Tea

n terms of the

are known.

place.

ned.

he work is car

ned.

ear.

d.

stood.

Team

are provided:

m

e opportunities

rried out are d

 Ess

s and outcome

defined.

sence, Version

es.

n 1.0

Essence, Version 1.0 57

Enough team members have been recruited to enable the work to progress.

Every team member understands how the team is organized and what their individual role is.

All team members understand how to perform their work.

The team members have met (perhaps virtually) and are beginning to get to know each other

The team members understand their responsibilities and how they align with their
competencies.

Team members are accepting work.

Any external collaborators (organizations, teams and individuals) are identified.

Team communication mechanisms have been defined.

Each team member commits to working on the team as defined.

Collaborating The team is working as one cohesive unit.

Communication within the team is open and honest.

The team is focused on achieving the team mission.

The team members know each other.

Performing The team consistently meets its commitments.

The team continuously adapts to the changing context.

The team identifies and addresses problems without outside help.

Effective progress is being achieved with minimal avoidable backtracking and reworking.

Wasted work, and the potential for wasted work are continuously eliminated.

Adjourned The team responsibilities have been handed over or fulfilled.

The team members are available for assignment to other teams.

No further effort is being put in by the team to complete the mission.

8.4.2.2 Work

Description

Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a software
system matching the requirement and addressing the opportunity presented by the stakeholders. The work is guided by
the practices that make up the team’s way-of-working.

States

Initiated The work has been requested.
Prepared All pre-conditions for starting the work have been met.
Started The work is proceeding.
Under Control The work is going well, risks are under control, and productivity levels are

sufficient to achieve a satisfactory result.
Concluded The work to produce the results has been concluded.
Closed All remaining housekeeping tasks have been completed and the work has

been officially closed.

58

Associa

updates a

set up to

Justifica

The abili
meeting t
out their

Progres

During th
they are
progressi
started an
when the

As indica
that the c

progresse
the work
impedim
to get the
work is u

There ar

ations

and changes: S

address : Opp

ation: Why W

ity of team me
their commitm
work, and how

ssing the Wo

he developme
initiated, prep
ion of the wor
nd brought un

e work itself is

ated in Figure
conditions are

ed and assigne
k is organized

ments are unde
e real work sta
under control.

re many pract

Software Syst

portunity

Work?

embers to co-
ments and del
w to recogniz

ork

ent of a softwa
pared, started
rk indicating w
nder control,
s closed and a

e 12, the work
right for the w

ed to a team.
d, appropriate
rstood. Once
arted. The tea

tices that can

tem Work u

Work se

-ordinate, orga
livering value
e when the wo

are system the
d, under contro
when the wor
when the res
ll loose ends a

is first initiat
work to be per

Figure 1

As the work
governance p
all the pre-co

am starts to co

n be used to

updates and ch

et up to addre

anize, estimat
e to their stak
ork is going w

e work progre
rol, concluded
rk is initiated
sults are achie
and outstandin

ted. This impl
rformed. If th

12 – The sta

is prepared, c
policies and p
onditions for s
omplete the in

help organize

hanges Softwa

ss Opportunit

te, complete, a
eholders. Team

well.

esses through s
d, and closed.

and prepared,
eved and the
ng work items

ies that someo
e work is not

ates of the W

commitments
procedures are
starting the wo
ndividual work

e and co-ordi

are System.

ty.

and share thei
m members n

several state c
These states p
, when the tea
development
s are addressed

one defines th
successfully i

Work

are made, fun
e put in place
ork are addres
k items, and b

inate the wor

 Ess

ir work has a
need to unders

changes. As sh
provide points
am is assembl
work is conc
d.

he desired resu
initiated, it wi

nding and reso
e, and prioriti
ssed, the team
builds evidenc

rk including

sence, Version

profound effe
stand how to

hown in Figur
s of stability i
led and the wo
cluded, and fi

ult, and makes
ll never be

ources are sec
es, constraint

m gets the go-a
ce showing tha

SCRUM, Kan

n 1.0

ect on
carry

re 10,
in the
ork is
nally,

s sure

cured,
ts and
ahead
at the

nban,

Essence, Version 1.0 59

PMBoK, PRINCE2, Task Boards and many, many more. These typically involve breaking the work down into:

1. Smaller, more bite sized work items that can be completed one-by-one such as work packages, and tasks.

2. One or more clearly defined work periods such as phases, stages, iterations, or sprints.

The level, depth and extent of the work breakdown depends on the style and complexity of the work and on the specific
practices the team selects to help them co-ordinate, monitor, control and undertake the work.

If the team has their work under control then there will be concrete evidence that:

1. The work is going well.

2. The risks threatening a successful conclusion to the work are under control as the impact if they occur and/or as
the likelihood of them occurring have been reduced to acceptable levels.

3. The team’s productivity levels are sufficient to achieve satisfactory results within the time, budget and any other
constraints that have been placed upon the work.

Typically, once the work has been concluded and the results have been accepted by the relevant stakeholders, there
remain some final housekeeping and wrap up activities to be completed before the work itself can be closed.

If, for any reason, the work is not going well, then it may be halted, abandoned or reverted to a previous state. If the work
is abandoned once it is started, it should still be properly closed even though it has not managed to pass through the
concluded state.

Understanding the current and desired state of the work can help the team to balance their activities, make the correct
investment decisions, nurture the work that is going well, and help or cancel the work that is going badly.

Checking the Progress of the Work

To help assess the state of the work and the progress being made towards its successful conclusion, the following
checklists are provided:

Table 13 – Checklist for Work

State Checklist

Initiated The result required of the work being initiated is clear.

Any constraints on the work’s performance are clearly identified.

The stakeholders that will fund the work are known.

The initiator of the work is clearly identified.

The stakeholders that will accept the results are known.

The source of funding is clear.

The priority of the work is clear.

Prepared Commitment is made.

Cost and effort of the work are estimated.

Resource availability is understood.

Governance policies and procedures are clear.

Risk exposure is understood.

Acceptance criteria are defined and agreed with client.

The work is broken down sufficiently for productive work to start.

Tasks have been identified and prioritized by the team and stakeholders.

60 Essence, Version 1.0

A credible plan is in place.

Funding to start the work is in place.

The team or at least some of the team members are ready to start the work.

Integration and delivery points are defined.

Started Development work has been started.

Work progress is monitored.

The work is being broken down into actionable work items with clear definitions of done.

Team members are accepting and progressing tasks.

Under Control Tasks are being completed.

Unplanned work is under control.

Risks are under control as the impact if they occur and the likelihood of them occurring have
been reduced to acceptable levels.

Estimates are revised to reflect the team’s performance.

Measures are available to show progress and velocity.

Re-work is under control.

Tasks are consistently completed on time and within their estimates.

Concluded All outstanding tasks are administrative housekeeping or related to preparing the next piece
of work.

Work results have been achieved.

The stakeholder(s) has accepted the resulting software system.

Closed Lessons learned have been itemized, recorded and discussed.

Metrics have been made available.

Everything has been archived.

The budget has been reconciled and closed.

The team has been released.

There are no outstanding, uncompleted tasks.

8.4.2.3 Way-of-Working

Description

Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working environment. As
their work proceeds they continually reflect on their way of working and adapt it to their current context, if necessary.

States

Principles Established The principles, and constraints, that shape the way-of-working are
established.

Foundation Established The key practices, and tools, that form the foundation of the way of working
are selected and ready for use.

In Use Some members of the team are using, and adapting, the way-of-working.

Essence,

In Place
Working
Retired

Associa

guides : W

Justifica

Software
team is o
software

The way

Progres

During th
presented
These sta
constrain

, Version 1.0

 well

ations

Work

ation: Why W

e engineering
organized. Th
engineering e

of working:

Is key to enab

Focuses the te

Enables the w

Helps the team

ssing the Wa

he course of a
d in Figure 13
ates focus on

nts that shape

Way-of-Wor

is a team spo
hey need to ag
endeavor.

bling a team to

eam on how th

work to be plan

m, and their a

F

ay-of-Worki

a software eng
, they are prin
the way a te
the way-of-w

All team
The team
The way

Way-of

rking?

ort, one that re
gree on a way

o work togeth

hey will collab

nned and cont

ssociated stak

Figure 13 – T

ng

gineering end
nciples establi
eam establishe
working are es

m members ar
m's way of wo
y of working

f-Working gui

equires the w
y of working

her effectively.

aborate to ensu

trolled.

keholders, to s

The states o

deavor the way
ished, founda
es an effectiv
stablished, (2)

re using the wa
orking is work
is no longer in

des Work.

whole team to
that will supp

.

ure success.

successfully fu

of the Way-o

y of working
tion establishe

ve way-of-wor
) when a min

ay of working
king well for t
n use by the te

collaborate ef
port collabora

ulfill their resp

f-Working

progresses th
ed, in use, in p
rking indicati
imal number

g to accomplis
the team.
eam.

ffectively reg
ation guide th

ponsibilities.

hrough severa
place, workin
ing (1) when
of key practi

sh their work.

gardless of how
hem throughou

l state change
g well, and re
the principle
ces and tools

 61

w the
ut the

es. As
etired.
s and
have

62 Essence, Version 1.0

been identified and integrated to establish a foundation for the evolution of the team’s way-of-working, (3) when the
chosen way of working is in use by the team, (4) when a team’s way of working is in place and in use by the whole team
(5) when it is working well, and (6) when the way of working has been retired and is no longer in use by the team.
Examples of principles and constraints could be how far into the future you plan, governance policies, how decisions are
made, and how the work in broken down.

There are many ways of working that the team could adopt to meet their objectives and establish their approach to
software engineering. As shown in Figure 13, the first step in adopting a new way-of-working, or adapting an existing
way-of-working, is to understand the team’s working environment and establish the principles that will guide their
selection of appropriate practices and tools. This includes identifying the constraints governing the selection of the team's
practices and tools and understanding the practices and tools that the team, and their stakeholders, are already using or
are required to use.

It is not enough to just understand the principles and constraints that will inform the team's way of working. These must
be agreed with, and actively supported by, the team and its stakeholders. Once the principles are established the team is
ready to start selecting the practices and tools that will form their way-of-working.

To establish a natural way of working the focus should first be on the key practices and tools; those that bring the team
together, enable communication among the team members, support collaborative working and are essential to the success
of the team. However, these practices and tools act as the foundation for the team’s way-of-working. Before the
foundation can be assembled it is important to understand the gaps between the practices and tools needed by the team
and the practices, and tools immediately available to the team. This enables the activities needed to fill these gaps to be
planned.

Once the key practices and tools are integrated then the way-of-working’s foundation is established and the way-of-
working is ready to be trialed by the team. It will however be continuously adapted as the work progresses, and
additional practices and tools will be added as the team inspects their way-of-working and adapts it to meet their
changing circumstances.

Rather than spending more time tailoring or tuning the way-of-working it is important that the team puts it into use as
soon as possible. The way-of-working is in use as soon as any of the team members are using and adapting it as part of
completing their work. As more and more of the team start to use and benefit from the way-of-working its usage will
grow until it is firmly in place and all the team members are using it to accomplish their work. Some team members may
still need help to understand certain aspects of the team's way of working and to make effective progress, but the way of
working is now the normal way for the team to develop software.

As the team progresses through the work, the way of working will become embedded in their activities and
collaborations to such an extent that its use, inspection and adaptation are all seen as a natural part of the way the team
works. The way-of-working is working well once it has stabilized and all team members are making progress as planned
by using and adapting it to suit their current working environment. Finally, when the way of working is no longer in use
by the team, it is retired.

Understanding the current and desired state of the team's way of working helps a team to continually improve their
performance, and adapt quickly and effectively to change.

Checking the Progress of the Way-of-Working

To help assess the current status of the way of working, the following checklists are provided:

Table 14 – Checklist for Way-of-Working

State Checklist

Principles Established Principles and constraints are committed to by the team.

Principles and constraints are agreed to by the stakeholders.

The tool needs of the work and its stakeholders are agreed.

A recommendation for the approach to be taken is available.

The context within which the team will operate is understood.

Essence, Version 1.0 63

The constraints that apply to the selection, acquisition and use of practices and tools are
known.

Foundation
Established

The key practices and tools that form the foundation of the way-of-working are selected.

Enough practices for work to start are agreed to by the team.

All non-negotiable practices and tools have been identified.

The gaps that exist between the practices and tools that are needed and the practices and
tools that are available have been analyzed and understood.

The capability gaps that exist between what is needed to execute the desired way of working
and the capability levels of the team have been analyzed and understood.

The selected practices and tools have been integrated to form a usable way-of-working.

In Use The practices and tools are being used to do real work.

The use of the practices and tools selected are regularly inspected.

The practices and tools are being adapted to the team’s context.

The use of the practices and tools is supported by the team.

Procedures are in place to handle feedback on the team’s way of working.

The practices and tools support team communication and collaboration.

In Place The practices and tools are being used by the whole team to perform their work.

All team members have access to the practices and tools required to do their work.

The whole team is involved in the inspection and adaptation of the way-of-working.

Working well Team members are making progress as planned by using and adapting the way-of-working to
suit their current context.

The team naturally applies the practices without thinking about them

 The tools naturally support the way that the team works.

The team continually tunes their use of the practices and tools.

Retired The team's way of working is no longer being used.

Lessons learned are shared for future use.

8.4.3 Activity Spaces
The endeavor area of concern contains five activity spaces that cover the formation and support of the team, and planning
and co-coordinating the work in-line with the way of working.

8.4.3.1 Prepare to do the Work

Description

Set up the team and its working environment. Understand and commit to completing the work.

Prepare to do the work to:

 Put the initial plans in place.

 Establish the initial way of working.

64 Essence, Version 1.0

 Assemble and motivate the initial project team.

 Secure funding and resources.

Input: Stakeholders, Opportunity, Requirements
Completion Criteria: Team::Seeded, Way of Working::Principles Established, Way of Working::Foundation Established,
Work::Initiated, Work::Prepared

8.4.3.2 Coordinate Activity

Description

Co-ordinate and direct the team’s work. This includes all ongoing planning and re-planning of the work, and adding any
additional resources needed to complete the formation of the team.

Coordinate activity to:

 Select and prioritize work.

 Adapt plans to reflect results.

 Get the right people on the team.

 Ensure that objectives are met.

 Handle change.

Input: Requirements, Team, Work, Way of Working
Completion Criteria: Team::Formed, Work::Started, Work::Under Control

8.4.3.3 Support the Team

Description

Help the team members to help themselves, collaborate and improve their way of working.

Support the team to:

 Improve team working.

 Overcome any obstacles.

 Improve ways of working.

Input: Team, Work, Way of Working
Completion Criteria: Team::Collaborating, Way of Working::In Use, Way of Working::In Place

8.4.3.4 Track Progress

Description

Measure and assess the progress made by the team.

Track progress to:

 Evaluate the results of work done.

 Measure progress.

 Identify impediments.

Input: Requirements, Team, Work, Way of Working
Completion Criteria: Team::Performing, Way of Working::Working Well, Work::Under Control, Work::Concluded

Essence, Version 1.0 65

8.4.3.5 Stop the Work

Description

Shut-down the software engineering endeavor and handover the team’s responsibilities.

Stop the work to:

 Close the work.

 Handover any outstanding responsibilities.

 Handover any outstanding work items.

 Stand down the team.

 Archive all work done.

Input: Requirements, Team, Work, Way of Working
Completion Criteria: Team::Adjourned, Way of Working::Retired, Work::Closed

8.4.4 Competencies

8.4.4.1 Leadership

Description

This competency enables a person to inspire and motivate a group of people to achieve a successful conclusion to their
work and to meet their objectives.

People with the leadership competency help the team to:

 Inspire people to do their work

 Make sure that all team members are effective in their assignments

 Make and meet their commitments

 Resolve any impediments or issues holding up the team's work

 Interact with stakeholders to shape priorities, report progress and respond to challenges.

Essential skills include:

 Inspiration

 Motivation

 Negotiation

 Communication

 Decision making

This competency is sometimes provided by a Scrum Master, an appointed team leader, the more experienced members of
the team, or a dedicated project manager.

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so

far.
Level 3 – Masters Able to apply the concepts in most contexts and has the experience to work without

supervision.
Level 4 – Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts. Can

enable others to apply the concepts.

66 Essence, Version 1.0

Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Leadership?

Software engineering is a complex endeavor typically involving teams of people dedicated to delivering an appropriate
solution to extended networks of customers, users and other stakeholders. It is essential that everybody is focused,
inspired and motivated towards achieving the same goals.

Within the software engineering kernel, the leadership competency is the ability to radiate enthusiasm, energy,
trustworthiness, confidentiality and direction. The people with this competency guide and help the team to a successful
conclusion, one that satisfies the needs of the stakeholders, within acceptable time and cost constraints.

8.4.4.2 Management

Description

This competency encapsulates the ability to coordinate, plan and track the work done by a team.

The management competency is the administrative and organizational ability that enables the right things to be done at
the right time to maximize a team’s chances of success.

Management helps the team to:

 Proactively manage risks

 Account for time and money spent

 Interact with stakeholders to report progress

 Coordinate and plan activities

Essential skills include:

 Communication

 Administration

 Organization

 Resource planning

 Financial reporting

This competency can be provided by the team members themselves, a team leader, a lead developer, a project manage-
ment office or a professional project manager.

Competency Levels

Level 1 – Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 – Applies Able to apply the concepts in simple contexts by routinely applying the experience gained so

far.
Level 3 – Masters Able to apply the concepts in most contexts and has the experience to work without

supervision.
Level 4 – Adapts Able to apply judgment on when and how to apply the concepts to more complex contexts.

Can enable others to apply the concepts.
Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Management?

Software engineering is a complex endeavor that requires the organization and coordination of many people and other
resources. It needs the team to possess the ability to track progress, organize facilities and events, co-ordinate all the
work, and integrate into the structure of the owning organization. The management competency encapsulates the abilities
needed to be able to coordinate and track the work done by the team.

Essence, Version 1.0 67

9 Language Specification

9.1 Specification Technique
This specification is constructed using a combination of three different techniques: a meta-model, a formal language, and
natural language. The meta-model (see Section 9.2) expresses the abstract syntax and some constraints on the structural
relationships between the elements. An invariant is provided for each element that, together with the structural constraints
in the meta-model, provides the well-formedness rules of the language (the static semantics). The invariants and some
additional operations are stated using the Object Constraint Language (OCL) as the formal language used in this
document. The composition of elements (see Section 9.4) as well as the dynamic semantics (see Section 9.5) are
described using natural language (English) accompanied by a formal calculus where appropriate.

9.1.1 Different Meta-Levels
The meta-model is based upon a standard specification technique using four meta-levels of constructs (meta-classes).
These levels are:

 Level 3 – Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

 Level 2 – Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

 Level 1 – Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

 Level 0 – Occurrence: the run-time instances, i.e. these are the real-life elements in a running development
effort.

For a more thorough description of the meta-level hierarchy, see Sections 7.9-7.11 in UML Infrastructure [UML 2011].

9.1.2 Specification Format
Within each section, there is first a brief informal description of the purpose of the elements in that language layer. This is
followed by a description of the abstract syntax of these elements together with some of the well-formedness rules, i.e.
the multiplicity of the associated elements. The abstract syntax is defined by a CMOF model [MOF 2011], the same
language used to define the UML metamodel. Each modeling construct is represented by an instance of a MOF class or
association. In this specification, this model is described by a set of UML class and package diagrams showing the
language elements and their relationships.

Following the abstract syntax is an enumeration of the elements in alphabetic order. Each concept is described according
to:

 Heading is the formal name of the language element.

 Description is a 1-2 sentence informal brief description of the element. This is intended as a quick reference for
those who want only the basic information about an element.

 Generalizations lists each of the parents (superclasses) of the language element, i.e. all elements it has
generalizations to.

 Attributes lists each of the attributes that are defined for that element. Each attribute is specified by its formal
name, its type, and multiplicity. This is followed by a textual description of the purpose and meaning of the
attribute. The following data types for attributes are used:

o String

o Boolean

o Integer

68 Essence, Version 1.0

o GraphicalElement

If data type Integer is used for lower or upper bounds at classes representing associations, only positive values,
0, and -1 are allowed. As by the usual convention, -1 represents an unlimited bound in these cases.

 Associations lists all the association ends owned by the element. Note that this sub clause does not list the
association-owned association ends. The format for element-owned association ends is the same as the one for
attributes described above.

 Invariant describes the well-formedness rules for language constructs including this element. These are mostly
described both with an informal text and with OCL expressions.

 Additional Operations describes any additional operations needed when expressing the well-formedness rules.
These are mostly described both with an informal text and with OCL expressions. The section is only present
when there are any additional operations defined.

 Semantics provides a detailed description of the element in natural language.

9.1.3 Notation Used
The following conventions are adopted in the diagrams throughout the specification:

 All meta-class names and class names start with an uppercase letter.

 An association with one end marked by a navigability arrow means that the association is navigable in the
direction of that end, the opposite class owns that end, and the association owns the unmarked association end.

 If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

 If an association end is unlabeled, the name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable association ends
are often left unlabeled since, in general, there is no need to refer to them explicitly text. However, in some
cases, these are used in formal (OCL) expressions.)

 If a class is presented in a diagram of a package and the class is not defined in that package, the full name of that
class is used. For instance, AlphaAndWorkProduct::Alpha refers to the class Alpha that belongs to package
AlphaAndWorkProduct.

9.2 Conceptual Model of the Language
This section serves as a narrative introduction to the language and illustrates the semantics on a coarse-grained level.

Figure 14 shows the main elements of the language and their most important associations. The elements centered in the
figure (i.e. Alpha, Alpha State, Activity Space, and Competency) are used to describe the contents of a Kernel. They
provide the abstract and essential things to do, things to work with and things to know in software engineering endeavors.
It is considered sufficient to know these four elements to be able to talk about the state, progress, and health of a software
engineering endeavor.

While the elements used in a Kernel represent abstract things, concrete guidance can be created via Practices by adding
elements like those shown on the right hand side of the figure. Work Products represent the concrete things to work with,
providing evidence for the states an Alpha is in. For example, the source code provides evidence on whether a component
is fully implemented or just a stub. Activities provide explicit guidance on how to produce or update Work Products,
which eventually will lead to state changes on some Alpha.

The dynamic semantics of the language are concerned with Alpha States and Activities. Based on the States an endeavor
is in and based on the States a team wants to reach next, Activities are derived that drive the endeavor towards that goal.

Essence,

Patterns a
dynamic
Work Pro
and usual

Patterns
15. There
a Pattern
Pattern ag

Beyond t

, Version 1.0

and Resource
semantics of

oducts, scripts
l way to tailor

can arrange la
e is no limitat

n for phases, w
gain that align

these main ele

Fig

s are generic c
the language

s or tools attac
r or adapt pred

anguage elem
tion in the num
which sequenc
ns a set of Alp

ements, the lan

gure 14 – Co

concepts that
as defined in
ched to Activi
defined Practi

ments into arbi
mber of eleme
ce Activities

pha States in o

nguage contai

onceptual M

can be attache
this specificat
ities, and lear
ices is to add s

itrary meaning
ents involved
or Activity Sp

order to synch

ins additional

Model of the

ed to any lang
tion. Example

rning material
specialized res

gful structures
in a pattern. P
paces and end

hronize the pro

elements to d

Language

guage element
es for Resourc
s or tests attac
sources or rep

s. Examples f
Patterns may a
d by reaching
ogress of Alph

etail the assoc

t. They are no
ces include tem
ched to Comp

place existing

for Patterns ar
also relate to

g a milestone,
has.

ciations and to

t considered b
mplates attach
petencies. A si
ones.

re shown in F
other Patterns
which in turn

o handle meta

 69

by the
hed to
imple

Figure
s, like
n is a

adata.

70

The comp
who wan
language
language
small chu

As a rem
about eac

9.3
As with
syntax),
semantic
construct

This sect
the langu
depicted

mplete set of la
nt to select. Co
e elements. M
e elements rig
unks that can b

markable featu
ch of the elem

Lang
most languag
some rules fo
s), and a desc
ts a concrete s

tion provides
uage and the
in Figure 16.

Foundation, c
sets of practic

AlphaAndWo
engineering e
products can

ActivitySpace

Competency,

anguage eleme
onsequently, th

Most associatio
ht from the b
be learned and

ure, the graphi
ments of the co

guage E
ge specificati
or how these
cription of the
syntax (notatio

the abstract s
relationships

contains the b
ces.

orkProduct, co
endeavors can
be related to a

eAndActivity,

contains elem

Figure

ents supports a
he language is
ons and sever
eginning. Inst
d used indepe

ical syntax of
onceptual mod

Elements
ons, this spec
elements sho
dynamic sem

on) is also pro

syntax and sta
 between the

ase elements t

ontains the ba
n be created.
abstract doma

, contains elem

ments to suppo

15 – Examp

advanced use
s designed to
ral attributes a
tead, the com

endently and in

f the language
del (besides Re

s and L
cification def

ould be combi
mantics of the l
ovided.

atic semantics
em. The elem

to form a min

ase elements
. No activitie

ain elements.

ments to enric

ort the specific

ples for Patte

cases, but the
allow meanin
are optional,

mplete set of la
ncrementally.

 defines speci
esources).

Languag
fines the elem
ined to create
language. In a

s of the langu
ments are grou

nimal core of t

to form mini
es can be exp

ch practices by

cation of comp

erns

e language con
ngful usage alr
so users are n

anguage elem

ific views to b

ge Mode
ments included
e well-formed
addition, for so

age by listing
uped into five

the language.

mal practices
pressed using

y expressing a

petencies.

 Ess

ncept is desig
ready with ve
not forced to

ments can be d

be used to rep

el
d in the lang

d language co
ome of the ele

g and describi
e main metam

It contains el

s. A domain m
g this layer, b

activities.

sence, Version

ned for those
ery small subs

use a large s
divided into se

present the es

guage (the ab
nstructs (the

ements or lang

ing the elemen
model packag

ements to org

model for soft
but concrete

n 1.0

users
ets of
set of
everal

sence

stract
static

guage

nts in
ges as

ganize

ftware
work

Essence, Version 1.0 71

 UserDefinedTypes, contains elements to enrich simple elements from Foundation with type information.

 View, contains elements to support the specification of view contents.

The ordering between the packages is expressed with import relationships. Each of the packages is described in a
separate subsection.

Figure 16 – Structure of the Essence Language metamodel

9.3.1 Foundation
The intention of the Foundation package is to provide all the base elements, including abstract super classes, necessary to
form a baseline foundation for the Language. The elements and their relationships are presented in the diagrams below. A
detailed definition of each of the elements is found in the following subsections.

Figure 17 – Foundation::Language element super class

72 Essence, Version 1.0

Figure 18 – Foundation::Language elements

Figure 19 – Foundation::Containers

Essence, Version 1.0 73

Figure 20 – Foundation::Generic elements

9.3.1.1 BasicElement

Package: Foundation
isAbstract: Yes
Generalizations: "LanguageElement"

Description

A generic name for all main concepts in Essence other than Element groups.

Attributes

name : String [1] The name of the element.
icon : GraphicalElement [0..1] The icon to be used when presenting the element.
briefDescription : String [1] A short and concise description of what the element is. It is discouraged to

use rich formatting and structuring elements like section headings in the brief
description. The content of this attribute should be a summary of the content
given in attribute “description”.

description : String [1] A more detailed description of the element. The content of this attribute may
be written in a markup language to allow for rich descriptions. It may include
section headings, formatting information, hyperlinks, or similar to ease
structured reading and navigation.

Associations

N/A

Invariant

true

Semantics

Basic elements are considered to represent the small set of main concepts within Essence. Basic elements are most likely
the first elements of Essence a user interacts with.

Elements of Essence which are no basic elements (and no element groups) are considered to be auxiliary elements used
to detail or connect basic elements.

74 Essence, Version 1.0

9.3.1.2 ElementGroup

Package: Foundation
isAbstract: Yes
Generalizations: "LanguageElement"

Description

A generic name for an Essence concept that names a collection of elements. Element groups are recursive, so a group
may own other groups, as well as other (non-group) elements.

Attributes

name : String [1] The name of the element group.
icon : GraphicalElement [0..1] The icon to be used when presenting the element group.
briefDescription : String [1] A short description of what the group is. It is discouraged to use rich

formatting and structuring elements like section headings in the brief
description. The content of this attribute should be a summary of the content
given in attribute “description”.

description : String [1] A more detailed description of the group. The content of this attribute may be
written in a markup language to allow for rich descriptions. It may include
section headings, formatting information, hyperlinks, or similar to ease
structured reading and navigation.

Associations

referredElements : LanguageElement [0..*] The language elements this group owns by reference.

ownedElements : LanguageElement [0..*] The language elements this group owns by value.

Invariant

-- An element group may not own itself
self.allElements(ElementGroup)->excludes(self)

-- An element group may only extend elements it owns
self.extensions->forAll(e | self.allElements(e.targetElement.oclType())-
>includes(e.targetElement))

Additional Operations

-- Get all elements of a particular type which are available within this group
and its referenced groups.
context ElementGroup::allElements (t : OclType) : Set(t)
body: self.referredElements->select(e | e.oclIsKindOf(t))-
>union(self.allElements(ElementGroup)->collect(c | c.allElements(t))-
>union(self.ownedElements->select(e | e.oclIsKindOf(t)))

Semantics

Element groups are used to organize Essence elements into meaningful collections such as Kernels or Practices. Elements
in a particular group belong together for some reason, while elements outside that group do not belong to them. The
reasoning for including elements in the group should be given in the description attribute of the group.

Element groups can own their members by reference or by value.

If an element group owns two or more members of the same type and name, composition (cf. section 9.4) is applied to
them so that only one merged element of that type with that name is visible when viewing the contents of the element
group.

Essence, Version 1.0 75

9.3.1.3 EndeavorAssociation

Package: Foundation
isAbstract: No
Generalizations:

Description

Represents associations that you want to track during an endeavor.

Attributes

N/A

Associations

memberEnd: EndeavorProperty [2..*] End properties of the association.

ownedEnd: EndeavorProperty [*] The properties of this association.

Invariant

true

Semantics

Endeavor associations are used to link actual instances of elements on the endeavor level. This can be used for instance to
keep track on which particular document (an instance of a work product) was created by which particular team member
(an instance of alpha “Team member”). In general, these associations have no specific semantics within Essence.

9.3.1.4 EndeavorProperty

Package: Foundation
isAbstract: No
Generalizations:

Description

An element to represent properties that you want to track during an endeavor. Each property can either be simple or be
expressed via an association.

Attributes

name: String [1] Name of the property.
lowerBound: Integer [1] Lower bound of the property.
upperBound : Integer [1] Upper bound of the property.

Associations

association : EndeavorAssociation
[0..1]

The association used to express this property if it is not a simple property.

owningAssociation :
EndeavorAssociation [0..1]

The association owning this property.

type : Type [1] The type of the property.

Invariant

true

76 Essence, Version 1.0

Semantics

Endeavor properties are used to track individual properties of actual instances of elements during an endeavor. Endeavor
properties can be defined individually for language elements. See section 9.5 for the minimal set of endeavor properties
that is used by the dynamic semantics of Essence.

9.3.1.5 ExtensionElement

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

An element that extends a language element by replacing the content of one of its attributes.

Attributes

targetAttribute : String [1] The name of the attribute which is to be extended.
extensionFunction : String [1] The function applied to the target attribute.

Associations

targetElement : LanguageElement [1] The element to be extended.

Invariant

-- The target element may not be an extension element or merge resolution
not self.targetElement.oclIsKindOf(ExtensionElement) and not
self.targetElement.oclIsKindOf(MergeResolution)

Semantics

If an extension X is associated with a target element T and referenced by element group C then when T is viewed in C,
what is seen is T modified by X by applying extension functions to the attributes of T. See section 9.4 for the detailed
mechanism.

9.3.1.6 Kernel

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor. A kernel is
an element group that names the basic concepts (i.e. alphas, activity spaces and competencies) for a domain (e.g.
Software Engineering).

Attributes

consistencyRules : String [1] Rules on the consistency of a particular Kernel. The format for writing these
rules is out of the scope of this specification. It is recommended to use either
plain text or OCL.

Associations

N/A

Invariant

-- A kernel can only contain alphas, alpha associations, alpha containments,

Essence, Version 1.0 77

activity spaces, competencies, kernels, extension elements, and merge
resolutions.
self.elements->forAll (e | e.oclIsKindOf(Alpha) or
e.oclIsKindOf(AlphaAssociation) or e.oclIsKindOf(AlphaContainment) or
e.oclIsKindOf(ActivitySpace) or e.oclIsKindOf(Competency) or
e.oclIsKindOf(Kernel) or e.oclIsKindOf(ExtensionElement) or
e.oclIsKindOf(MergeResolution))

-- The alphas associated by alpha associations are available within the kernel or
-- its base kernels.
self.allElements(AlphaAssociation)->forAll (aa | self.allElements(Alpha)-
>includes (aa.end1) and self.allElements(Alpha)->includes (aa.end2))

-- All input alphas of the activity spaces are available within the
-- kernel or its base kernels.
self.allElements(ActivitySpace)->forAll (as | self.allElements(Alpha)-
>includesAll(as.input))

-- Completion criteria are only expressed in terms of states which belong to
alphas which are available in the kernel or its base kernels.
self.allElements(ActivitySpace)->forAll (as | as.completionCriterion->forAll (cc
| cc.state<> null and cc.workProduct = null and self.allElements(Alpha)->exists(a
| a.states->includes(cc.state))))

Semantics

A kernel is a kind of domain model. It defines important concepts that are general to everyone when working in that
domain, like software engineering development.

A kernel may be defined using other, more basic kernels. For example, a more basic kernel may contain elements that are
meaningful to the domain of “Software Engineering” and that may be used in the specific context of “Software
Engineering for safety critical” domains as defined by a dependent kernel.

A kernel is closed in that elements in the kernel may only refer to elements which are also part of the kernel or its base
kernels.

9.3.1.7 LanguageElement

Package: Foundation
isAbstract: Yes
Generalizations:

Description

A generic name for an Essence concept. A language element may be a basic concept, an auxiliary element or an element
group.

Attributes

isSuppressable : boolean A flag indicating whether this element may be suppressed in an extension or
composition.

Associations

owner : ElementGroup [0..1] The element group that owns this language element by value.
tags : Tag [0..*] Tags associated with this language element.
resources : Resource[0..*] Resources associated with this language element.
properties : EndeavorProperty [*] Properties (defined at M1 level) that you want to track during the endeavor.

Invariant

-- All language elements that are no element groups need an owner
(not self.oclIsKindOf(ElementGroup)) implies owner <> null

78 Essence, Version 1.0

-- Make sure each and every instance of LanguageElement may be related to each
other via endeavor associations
LanguageElement::allInstances->forAll(e1,e2 : LanguageElement |
EndeavorAssociation::allInstances->exists(a: EndeavorAssociation | a.member-
>exists(p1,p2 : EndeavorProperty | p1.owningAssociation=e1 and p2.
owningAssociation=e2)))

Semantics

Language element is the root for all basic elements, auxiliary elements and element groups. It defines the concepts within
the Essence language that can be grouped to build composite entities such as Kernels and Practices.

9.3.1.8 Library

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A library is a container that names a collection of element groups.

Attributes

N/A

Associations

N/A

Invariant

-- A library may only own element groups
self.referredElements->forAll(e | e.oclIsKindOf(ElementGroup)) and
self.ownedElements->forAll(e | e.oclIsKindOf(ElementGroup))

Semantics

A library contains element groups relevant for a specific subject or area of knowledge, like software development.

A library can be used to set up a meaningful collection of element groups of any scale, e.g. a collection of practices used
in a company or a collection of practices and kernels taught in a university course.

9.3.1.9 MergeResolution

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

An element that provides a solution for a merge conflict.

Attributes

targetAttribute : String [1] The name of the attribute on which the conflict is solved.
targetName : String [1] The name of the element on which the conflict is solved.
resolutionFunction : String [1] The function applied to the target attribute.

Associations

N/A

Essence, Version 1.0 79

Invariant

true

Semantics

If an element group refers to more than one element with the same name, these elements are merged when viewing the
content of this element group. For each conflicting attribute on the merged objects, a merge resolution must be defined. It
applies a resolution function to the conflicting attributes and returns the attribute value to be used as resolution. See
section 9.4 for the detailed mechanism.

9.3.1.10 Method

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A Method is the composition of a Kernel and a set of Practices to fulfill a specific purpose.

Attributes

purpose : String [1] The purpose of this Method. The content of this attribute should be an
explicit short statement that describes the goal that the method pursues.
Additional explanations can be given in the attribute “description” inherited
from “ElementGroup”.

Associations

baseKernel : Kernel [1] The Kernel this Method is based on.

Invariant

-- A method can only contain practices.
self.referredElements->forAll (e | e.oclIsKindOf(Practice)) and
self.ownedElements->forAll (e | e.oclIsKindOf(Practice))

Semantics

A method contains a set of practices to express the practitioners’ way of working in order to fulfill a specific purpose. The
method purpose should consider the stakeholder needs, particular conditions and the desired software product. The set of
practices that makes up a method should contribute and be sufficient to the achievement of this purpose.

For example, a method purpose can be related to developing, maintaining or integrating a software product.

The set of practices, that articulate a method, should satisfy the coherency, consistency and completeness properties. The
set of practices is coherent if the objective of each practice contributes to the entire method purpose, is consistent if each
of its entries and results are interrelated and useful. Finally, it is complete if the achievement of all practice objectives
fulfills entirely the method purpose and produces expected output.

Those properties are most likely not true from the beginning while authoring a method.

9.3.1.11 Pattern

Package: Foundation
isAbstract: No
Generalizations: "BasicElement"

Description

A pattern is a generic mechanism for naming complex concepts that are made up of several Essence elements. A pattern

80 Essence, Version 1.0

is defined in terms of pattern associations.

Attributes

N/A

Associations

associations : PatternAssociation [*] Named association types between elements.

Invariant

true

Semantics

Pattern is a general mechanism for defining a structure of language elements. Typically, the pattern references other
elements in a practice or kernel. For example, a role may be defined by referencing required competencies, having
responsibility of work products, and participation in activities. Another example could be a phase which groups activity
spaces that should be performed during that phase.

Patterns can also be used to model complex conditions. For example, a pattern for pre-conditions can create associations
to activities, work products and level of detail to express that particular work products must be present in at least the
designated levels of detail to be ready to start the particular activities.

9.3.1.12 PatternAssociation

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

Pattern associations are used to create named links between the elements of a pattern.

Attributes

name : String [1] Name of the association.

Associations

elements : LanguageElement [*] The elements taking part in the pattern via this association.

Invariant

-- A pattern association may not refer to other pattern associations, element
groups, extension elements, or merge resolutions
self.elements->forAll (e | not e.oclIsKindOf(PatternAssocation) and not
e.oclIsKindOf(ElementGroup) and not e.oclIsKindOf(ExtensionElement) and not
e.oclIsKindOf(MergeResolution))

Semantics

Each pattern association introduces elements to take part in a pattern. The name of the pattern association should explain
the meaning these elements have inside the pattern. For example, in a pattern defining a toolset there may be a pattern
association named “used for” referring to an activity, another pattern association named “used on” referring to a work
product, and a third pattern association named “suitable for” referring to a level of detail on the work product that can be
achieved with that toolset.

Essence, Version 1.0 81

9.3.1.13 Practice

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A practice is a description of how to handle a specific aspect of a software engineering endeavor. A practice is an element
group that names all Essence elements necessary to express the desired work guidance with a specific objective. A
practice can be defined as a composition of other practices.

Attributes

consistencyRules : String [1] Rules on the consistency of a particular Practice. The format for writing
these rules is out of the scope of this specification. It is recommended to use
either plain text or OCL.

objective : String [1] The objective of this Practice, expressed as a concise and isolated phrase.
The content of this attribute should be an explicit and short statement that
describes the goal that the practice pursues. Additional explanations can be
given in the attribute “description” inherited from “ElementGroup”.

measures : String [0..*] List of standard units used to evaluate the practice performance and the
objectives’ achievement.

entry : String [0..*] Expected characteristics of elements needed to start the execution of a
practice.

result: String [0..*] Expected characteristics of elements required as outputs after the execution a
practice is completed.

Associations

N/A

Invariant

-- The alphas and the work products associated by the work product manifests are
-- visible within the practice.
self.allElements(WorkProductManifest)->forAll (wpm |
self.allElements(Alpha)->includes (wpm.alpha) and
self.allElements(WorkProduct)->includes (wpm.workProduct)

-- Associated activities are visible within the practice.
self.allElements(ActivityAssociation)->forAll (a | (self.allElements(Activity)-
>includes(a.end1) or self.allElements(ActivitySpace)->includes(a.end1)) and
(self.allElements(Activity)->includes(a.end2) or self.allElements(ActivitySpace)-
>includes(a.end2)))

-- All alphas and work products involved in actions of activities are
-- available within the practice.
self.allElements(Activity)->forAll (a | a.action->forAll (ac |
self.allElements(WorkProduct)->includesAll (ac.workProduct) and
self.allElements(Alpha)->includesAll (ac.alpha))

-- Completion criteria are only expressed in terms of states which belong to
alphas or levels of detail which belong to work products which are available in
the practice.
self.allElements(ActivitySpace)->forAll (as | as.completionCriterion->forAll (cc
| (cc.state<> null and cc.workProduct = null and self.allElements(Alpha)-
>exists(a | a.states->includes(cc.state))) or (cc.state = null and
cc.workProduct<> null and self.allEments(WorkProduct)->exists(wp |
wp.levelsOfDetail->includes(cc.workProduct)))))

-- The activities’ required competencies are visible within the practice.

82 Essence, Version 1.0

self.allElements(Activity)->forAll(a | self.allElements(Competency)->exists (c |
c.possibleLevel->includes (a.requiredCompetencyLevel))

-- All elements associated with a patterns are visible within the practice.
self.allElements(Pattern)->forAll (p | p.associations->forAll (pa | pa.elements-
>forall (pae | self.allElements(pae.oclType)->includes(pae))

Semantics

A practice addresses a specific aspect of development or teamwork. It provides the guidance to characterize the problem,
the strategy to solve the problem, and instructions to verify that the problem has indeed been addressed. It also describes
what supporting evidence, if any, is needed and how to make the strategy work in real life.

A practice provides a systematic and repeatable way of work focused on the achievement of an objective. When the
practice is made up by activities, the completion criteria derived from them are used to verify if the produced result
achieves the practice’s objective. To evaluate the practice performance and the objectives’ achievement, selected
measures can be associated to it. Measures are estimated and collected during the practice execution.

As might be expected, there are several different kinds of practices to address all different areas of development and
teamwork, including (but not limited to):

 Development Practices – such as practices for developing components, designing user interfaces, establishing an
architecture, planning and assessing iterations, or estimating effort.

 Social Practices – such as practices on teamwork, collaboration, or communication.

 Organizational Practices – such as practices on milestones, gateway reviews, or financial controls.

Except trivial examples, a practice does not capture all aspects of how to perform a development effort. Instead, the
practice addresses only one aspect of it. To achieve a complete description, practices can be composed. The result of
composing two practices is another practice capturing all aspect of the composed ones. In this way, more complete and
powerful practices can be created, eventually ending up with one that describes how an effort is to be performed, i.e. a
method.

The definition of a practice may be based on elements defined in a kernel. These elements, like alphas, may be used (and
extended) when defining elements specific to the practice, like work products.

A practice may be a composition of other practices. All elements of the other practices are merged and the result becomes
a new practice (see Section 9.4 for the definition of composition).

A practice is closed in that elements in the practice may only refer to elements which are also part of the practice or the
element groups this practice relates to.

9.3.1.14 PracticeAsset

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A practice asset is a container that names a collection of language element that are no element groups.

Attributes

N/A

Associations

N/A

Invariant

-- A practice asset may not own element groups

Essence, Version 1.0 83

self.referredElements->forAll(e | not e.oclIsKindOf(ElementGroup)) and
self.ownedElements.>forAll(e | not e.oclIsKindOf(ElementGroup))

Semantics

A practice asset contains elements intended to be reused while building practices. Different to a kernel, the elements in a
practice asset do not necessarily form a common ground or vocabulary. Different to a practice, the elements in a practice
asset do not necessarily address a particular problem or provide explicit guidance.

9.3.1.15 Resource

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

A source of information or content, such as a website, that is outside the Essence model and referenced from it, for
instance by a URL.

Attributes

content : String [1] A reference to the content of the resource. The reference can be provided in
any suitable way, e.g. as a hyperlink or as a full text document.

Associations

N/A

Invariant

true

Semantics

Resources are used to make information available from an Essence model without translating this information into terms
of Essence elements and their attributes explicitly. This can for instance be used if the formal model should be kept small
for some reason while storing additional information informally in resources. It can also be used of a complex practice or
method is to be adopted partially in Essence, while the full practice or method description lives as an external resource
outside the Essence model.

Resources are also used to attach external objects like templates, tools, study material, or similar to language elements.

84 Essence, Version 1.0

9.3.1.16 Tag

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

A label that can be attached to a language element. This enables the creation of user-defined classification schemes for
the content of a model.

Attributes

value : String [1] Value of the tag.

Associations

N/A

Invariant

-- Value may not be empty
not self.value.isEmpty()

Semantics

Tagging allows to add user defined or tool specific information to any language element. It is up to the user or tool
vendor who applied the tags to interpret them. Examples for tagging include author tags, version tags, and categorization
into areas of concern like “endeavor space”, “customer space”, and “solution space”.

9.3.2 AlphaAndWorkProduct
The intention of the AlphaAndWorkProduct package is to provide the basic elements needed for the simplest form of
practices. The elements and their relationships are presented in the diagrams below. A detailed definition of each of the
elements is found below.

Figure 21 – AlphaAndWorkProduct::Language elements

Essence, Version 1.0 85

Figure 22 – AlphaAndWorkProduct::Alpha and work product

9.3.2.1 Alpha

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "BasicElement"

Description

An essential element that is relevant to an assessment of the progress and health of a software engineering endeavor.

An alpha represents and holds the state of some element, aspect or abstraction in an endeavour that has a discernable state
and knowledge of whose state is required to understand the state of progress and/or health of the endeavour.

The instances of alphas in an endeavour form acyclic graphs. These graphs show how the states of lower level, more
granular instances, contribute to and drive the states of the higher level, more abstract, alphas.

Attributes

N/A

Associations

states : State [1..*] The states of the alpha.

Invariant

-- All states of an alpha must have different names.
self.states->forAll(s1, s2 | s1 <> s2 implies s1.name <> s2.name)

86 Essence, Version 1.0

Semantics

Alpha is an acronym that means “Abstract-Level Progress Health Attribute.”

Alphas are subjects whose evolution we want to understand, monitor, direct, and control. The major milestones of a
software engineering endeavor can be expressed in terms of the states of a collection of alphas. Thus, alpha state
progression means progression towards achieving the objectives of the software engineering endeavor.

An alpha has well-defined states, defining a controlled evolution throughout its lifecycle – from its creation to its
termination state. Each state has a collection of checkpoints that describe what the alpha should fulfill in this particular
state. Hence it is possible to accurately plan and control their evolution through these states.

An alpha may be used as input to an activity space in which the content of the alpha is used when performing the work of
the activity space. The alpha (and its state) may be created or updated during the performance of activities in an activity
space.

An alpha is often manifested in terms of a collection of work products. These work products are used for documentation
and presentation of the alpha. The shape of these work products may be used for concluding the state of the alpha.

Different practices may use different collections of work products to document the same alpha. For example, one practice
may document all kinds of requirements in one document, while other practices may use different types of documents.
One practice may document both the flow and the presentation of a use case in one document, while another practice may
separate the specification of the flow from the specification of the user interface and write them in different documents.

An alpha may contain a collection of other alphas. Together, these sub-alphas contribute to the state of the superordinate
alpha. However, there is no explicit relationship between the states of the subordinate alphas and the state of their
superordinate alpha.

9.3.2.2 AlphaAssociation

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

Alpha association is used to represent a relationship between alphas. Generally these associations are defined by a
practice.

Attributes

end1LowerBound : Integer [1] Lower bound of association endpoint 1.
end1UpperBound : Integer [1] Upper bound of association endpoint 1.
end2LowerBound : Integer [1] Lower bound of association endpoint 2.
end2UpperBound : Integer [1] Upper bound of association endpoint 2.
name : String [1] Name of the alpha association.

Associations

end1 : Alpha [1] The alpha endpoint 1 of the association.

end2 : Alpha [1] The alpha endpoint 2 of the association.

Invariant

true

Semantics

Unlike a relationship between alphas defined using alpha containment, which is used for the Essence “sub-alpha”
relationship, a relationship between alphas defined using alpha association has no defined semantics in Essence. An
example would be between a Risk and the Team Member who identified the Risk. While Risk Management practice
might recommend that this relationship be tracked, it is not a sub-alpha relationship.

Essence, Version 1.0 87

A relationship modeled by an alpha association can, in general, be many-to-many.

9.3.2.3 AlphaContainment

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

Alpha association is used to represent a sub(ordinate)-alpha relationship between alphas.

Attributes

lowerBound : Integer [1] Lower bound for the number of instances of the sub(ordinate)-alpha.
upperBound : Integer [1] Upper bound for the number of instances of the sub(ordinate)-alpha.

Associations

superAlpha : Alpha [1] The super alpha.
subordinateAlpha : Alpha [1] The subordinate alpha.

Invariant

true

Semantics

The sub-alpha relationships define the graphs that show how the states of lower level, more granular alpha instances
contribute to and drive the states of the higher level, more abstract, alpha instances.

The relationship between a sub(ordinate)-alpha and a super-alpha can, in general, be many-to-many. The ends of the
relationship are modeled separately to indicate which is the sub(ordinate)-alpha and which is the super-alpha of the
relationship.

9.3.2.4 Checkpoint

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

A condition that can be tested as true or false that contributes to the determination of whether a state (of an alpha) or a
level of detail (of a work product) has been attained.

Attributes

name : String [1] The name of the checkpoint.
description : String [1] A description of the checkpoint.

Associations

N/A

Invariant

true

Semantics

Checkpoints are used as follows:

88 Essence, Version 1.0

 The checkpoints of an alpha state are joined by AND. The state of an alpha is deemed to be the most advanced
(favourable) state for which all checkpoints are true.

 The checkpoints of a work product level of detail are joined by OR. The level of detail of a work product is
deemed to be the most detailed level for which at least one checkpoint is true.

9.3.2.5 LevelOfDetail

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

A specification of the amount of detail or range of content in a work product. The level of detail of a work product is
determined by evaluating checklist items.

Attributes

description : String [1] A description of the level of detail.
isSufficientLevel : Boolean [1] Boolean value determined by the practice (author) to indicate the sufficient

level of detail.
name : String [1] Name of the level of detail.

Associations

checkListItem : Checkpoint [*] Checklist items to determine if the level of detail has been reached.
successor: LevelOfDetail [0..1] Next level of detail.

Invariant

-- All checkpoints of a level of detail must have different names
self.checkListItem->forAll(i1, i2 | i1 <> i2 implies i1.name <> i2.name)

-- A level of detail may not be its own direct or indirect successor
self.allSuccessors()->excludes(self)

Additional Operations

-- All successors of a level of detail
context LevelOfDetail::allSuccessors : Set(LevelOfDetail)
body: Set{self.successor}->union(self.successor.allSuccessors())

Semantics

Levels of detail describe the amount and granularity of information that is present in a work product. For example, they
allow to distinguish between a sketch of a system architecture, a formally modeled system architecture, and an annotated
system architecture which is ready for code generation. It depends on the practice which of these levels is considered
sufficiently detailed.

It is important to note that levels of detail are not concerned with the completeness of a work product. A work product
can be considered complete for the purpose of the endeavor without being in the most advanced level of detail. In turn, a
work product can be in the most advanced level of detail, but not yet been completed.

9.3.2.6 State

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Essence, Version 1.0 89

Description

A specification of the state of progress of an alpha. The state of an alpha is determined by evaluating checklist items.

Attributes

name : String [1] The name of the state.
description : String [1] Some additional information about the state.

Associations

checkListItem : Checkpoint [*] A collection of checkpoints associated with the state.

successor : State [0..1] The successor state.

Invariant

-- All checkpoints of a state must have different names
self.checkListItem->forAll(i1, i2 | i1 <> i2 implies i1.name <> i2.name)

-- A state may not be its own direct or indirect successor
self.allSuccessors()->excludes(self)

Additional Operations

-- All successors of a state
context State::allSuccessors : Set(State)
body: Set{self.successor}->union(self.successor.allSuccessors())

Semantics

A state expresses a situation in which all its associated checklist items are fulfilled. It is considered to be an important
and remarkable step in the lifecycle of an alpha.

9.3.2.7 WorkProduct

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "BasicElement"

Description

A work product is an artifact of value and relevance for a software engineering endeavor. A work product may be a
document or a piece of software, but also other created entities such as:

 Creation of a test environment

 Delivery of a training course

Attributes

N/A

Associations

levelOfDetail: LevelOfDetail [0..*] The level of details defined for the work product.

Invariant

-- All levels of detail of a work product must have different names
self.levelOfDetail->forAll(l1, l2 | l1 <> l2 implies l1.name <> l2.name)

90 Essence, Version 1.0

Semantics

A work product is a concrete representation of an alpha. It may take several work products to describe the alpha from all
different aspects.

A work product can be of many different types such as models, documents, specifications, code, tests, executables,
spreadsheets, as well as other types of artifacts. In fact, some work products may even be tacit (conversations, memories,
and other intangibles).

Work products may be created, modified, used, or deleted during an endeavor. Some work products constitute the result
of (the deliverables from) the endeavor and some are used as input to the endeavor.

A work product could be described at different levels of details, like overview, user level, or all details level.

9.3.2.8 WorkProductManifest

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

A work product manifest binds a work product to an alpha.

Attributes

lowerBound : Integer[1] Lower bound for the number of instances of the work product associated to
one instance of the alpha.

upperBound : Integer [1] Upper bound for the number of instances of the work product associated to
one instance of the alpha.

Associations

alpha : Alpha [1] The alpha bound by this manifest.
workProduct : WorkProduct [1] The work product bound by this manifest.

Invariant

true

Semantics

Work product manifest represents a tri-nary relationship. It is a relationship from a practice to a work product which is
used for describing an alpha. Several work products may be bound to the same alpha, i.e. there may be multiple alpha
manifests within a practice binding a specific alpha to different work products.

For each work product manifest, there is a multiplicity stating how many instances there should be of the associated work
product describing one instance of the alpha.

9.3.3 ActivitySpaceAndActivity
The intention of the ActivitySpaceAndActivity package is to provide additional elements to deal with more advanced
practices. The elements and their relationships are presented in the diagrams shown below. A detailed definition of each
of the elements is found below.

Essence, Version 1.0 91

Figure 23 – ActivitySpaceAndActivity::Language elements

Figure 24 – ActivitySpaceAndActivity::Activity space and activity

92 Essence, Version 1.0

9.3.3.1 AbstractActivity

Package: ActivitySpaceAndActivity
isAbstract: Yes
Generalizations: "BasicElement"

Description

An abstract activity is either a placeholder for something to be done or a concrete activity to be performed.

Attributes

N/A

Associations

completionCriterion : CompletionCriterion [1..*] A collection of completion criteria that have to be fulfilled for
considering the activity completed.

Invariant

true

Semantics

Abstract activities serve as a super class for activity spaces and activities. Each abstract activity has to have completion
criteria, telling the practitioner when the abstract activity can be considered completed.

9.3.3.2 Action

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "LanguageElement"

Description

An operation performed by an activity on a particular work product.

Attributes

kind : String [1] The kind of the action.

Associations

alpha : Alpha [0..*] The alphas (if any) touched by this action.
workProduct : WorkProduct [0..*] The work products (if any) touched by this action.

Invariant

-- The action touches either alphas or work products, but not both nor nothing
(self.alpha->isEmpty() implies self.workProduct->notEmpty()) and (self.alpha-
>notEmpty() implies self.workProduct->isEmpty())

Semantics

Activities may involve work products in different ways. In an action, one of four possible operations can be specified that
an activity performs on a work product:

 “create”: The activity creates the work product. It is likely to use this kind of operation in activities that set up an
environment or create initial version of work products.

 “read”: The activity reads the work product but does not change it. This kind of operation assumes that the work
product needs to be present to be successful in this activity. It is likely to use this kind of operation in activities

Essence, Version 1.0 93

that transform contents from one work product into other work products.

 “update”: The activity possibly modifies the work product. In an actual endeavor, there may be cases in which
no modification is necessary, but there is at least one case in which the work product has changed after
performing the activity. This kind of operation assumes that the work product needs to be present to be
successful in this activity.

 “delete”: The activity deletes the work product. This kind of operation assumes that the work product does no
longer exist if the activity is completed successfully. Note that deleted work products cannot be covered by
completion criteria. It is likely to use this kind of operation in activities that finalize an endeavor and thus
remove intermediate results for privacy or security reasons.

9.3.3.3 Activity

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "AbstractActivity"

Description

An Activity defines one or more kinds of work product and one or more kinds of task, and gives guidance on how to use
these in the context of using some practice.

Attributes

approach : String [1..*] Different approaches to accomplish the activity.

Associations

requiredCompetencyLevel : CompetencyLevel [*] A collection of competencies required for completing this
activity successfully.

action : Action [0..*] A collection of actions on work products or alphas
recommended by this activity.

Invariant

true

Semantics

An activity describes some work to be performed. It is considered completed if all its completion criteria are fulfilled;
whether or not this completion was because of performance of the activity or for some other reason. Performing an
activity can normally be expected to result in its completion criteria being fulfilled, but this is not guaranteed.

An activity can recommend to perform actions on alphas and/or work products. There is no specific relation between the
actions recommended by an activity and its completion criteria. For example, an activity for a Sprint Retrospective
according to Scrum will have alpha “Way of Working” as subject for action “modify”, because it is possible that the team
decides to change the way of working based on the results of the retrospective. However, there is no specific relationship
indicating that the Sprint Retrospective can only be considered complete if the alpha “Way of Working” has reached a
certain state, so it will not be listed among the completion criteria. In turn, an activity for monitoring a team’s
performance can be considered complete if the team is abandoned, but the activity will never imply any action on the
“team” alpha.

The activity is a manifestation of (part of) an activity space through an activity association. The activities filling the same
activity space jointly contribute to the achievement of the completion criteria of the activity space. Activities may define
different approaches to reach a goal which may imply restrictions on how different activities may be combined. One
activity may be bound to multiple activity spaces within a practice.

The activity may be related to other activities via an activity association. The association indicates a relationship between
the activities, such as a work breakdown structure. Activity associations do not constrain the completion of the associated
activities.

94 Essence, Version 1.0

To be likely to succeed with the activity, the performer(s) of the activity must have at least the competencies required by
the activity to be able to perform that activity with a satisfactory result.

9.3.3.4 ActivityAssociation

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "LanguageElement"

Description

Activity association is used to represent a relationship or dependency between activities. Generally these dependencies
are defined by the practice that defines the activities.

Attributes

kind : String [1] The kind of the association.

Associations

end1 : AbstractActivity [1] The first member of the association.
end2 : AbstractActivity [1] The second member of the association.

Invariant

-- Activity spaces can only be part of other activity spaces
(self.end2.oclIsKindOf(ActivitySpace) and self.kind = “part-of”) implies
self.end1.oclIsKindOf(ActivitySpace)

Semantics

Activities can be related to each other via activity associations. They define relationships or dependencies between
activities, but do not constrain their completion.

If the kind of the association is “part-of”, the first member of the association is considered to be part of the second
member in a work breakdown structure. A usual way of using this kind is to assign activities to an activity space they
populate.

If the kind of the association is “start-before-start”, it is suggested to start the first member before starting the second
member.

If the kind of the association is “start-before-end”, it is suggested to start the first member before finishing the second
member.

If the kind of the association is “end-before-start”, it is suggested to finish the first member before starting the second
member. This may imply that the second member cannot be started before the first member is finished.

If the kind of the association is “end-before-end”, it is suggested to finish the first member before finishing the second
member. This may imply that the second member cannot be finished before the first member is finished.

However, in any case a member is considered complete if its completion criteria are met, independent of the completion
of its associated activities.

Essence, Version 1.0 95

9.3.3.5 ActivitySpace

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "AbstractActivity"

Description

A placeholder for something to be done in the software engineering endeavor.

Attributes

N/A

Associations

input : Alpha[*] A collection of alphas that have to be present to be successful in
fulfilling the objectives of this activity space.

Invariant

true

Semantics

An activity space is a high-level abstraction representing “something to be done”. It uses a (possibly empty) collection of
alphas as input to the work. When the work is concluded a collection of alphas (possibly some of the alphas used as
input) has been updated. The update may cause a change of the alpha’s state. When the update and the state change of an
alpha takes place is not defined; only that it has been done when the activity space is completed.

What should have been accomplished when the work performed in the activity space is completed, i.e. the activity
space’s completion criteria, is expressed in terms of which states the output alphas should have reached. Using the
checkpoints for the states of alphas, it is at the discretion of the team to decide when a state change has occurred and thus
the completion criteria of the activity space have been met.

9.3.3.6 CompletionCriterion

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "LanguageElement"

Description

A condition that can be tested as true or false that contributes to the determination of whether an activity or an activity
space is complete. A completion criterion is expressed in terms of the state of an alpha or the level of detail of a work
product.

Attributes

description : String [1] A description of the criterion which is to be reached at the target state of an
alpha or the level of detail of a work product.

Associations

state : State [0..1] A state to be reached.
levelOfDetail : LevelOfDetail [0..1] A level of detail to be reached.

96 Essence, Version 1.0

Invariant

-- A completion criterion addresses either a state or a level of detail
(self.state<> null and levelOfDetail = null) or (self.state = null and
levelOfDetail<> null)

Semantics

The work of an activity or activity space is considered complete when its completion criteria are fulfilled, i.e. when the
alpha states or work product levels of detail defined by the completion criteria are reached.

9.3.4 Competency
The intention of the Competency package is to provide facilities to add competencies to practices. The elements and their
relationships are presented in the diagrams shown below. A detailed definition of each of the elements is found below.

Figure 25 – Competency::Language elements

Figure 26 – Competency::Competency

9.3.4.1 Competency

Package: Competency
isAbstract: No
Generalizations: "BasicElement"

Essence, Version 1.0 97

Description

A competency encompasses the abilities, capabilities, attainments, knowledge, and skills necessary to do a certain kind of
work.

Attributes

N/A

Associations

possibleLevel : CompetencyLevel [*] A collection of levels defined for this competency.

Invariant

-- The possible levels are distinct
self.possibleLevel->forAll (l1, l2 | l1 <> l2 implies (l1.level <> l2.level and
l1.name <> l2.name))

Semantics

A competency is used for defining a capability of being able to work in a specific area. In the same way as an Alpha is an
abstract thing to monitor and control and an Activity Space is an abstraction of what to do, a Competency is an abstract
collection of knowledge, abilities, attitudes, and skills needed to perform a certain kind of work.

9.3.4.2 CompetencyLevel

Package: Competency
isAbstract: No
Generalizations: "LanguageElement"

Description

A competency level defines a level of how competent or able someone is in a subject.

Attributes

name : String [1] The name of the competency level.
briefDescription : String [1] A short description of what the competency level is.
level : Integer [1] A numeric indicator for the level, where a higher number means more/better

competence.

Associations

N/A

Invariant

true

Semantics

Competency levels are used to create a range of abilities from poor to excellent or small scale to large scale. While a
competency describes what capabilities are needed (such as “Analyst” or “Developer”), a competency level adds a
qualitative grading to them. Typically, the levels range from 0 – no competence to 5 – expert. (such as “basic”,
“advanced”, or “excellent”).

9.3.5 UserDefinedTypes
In order to add more detailed information on some of the elements in the Foundation package, these are extended by
elements in the package for user defined types. The elements and their relationships are presented in the diagrams shown

98 Essence, Version 1.0

below. A detailed definition of each of the elements is found below.

Figure 27 – UserDefinedTypes::UserDefinedTypes

9.3.5.1 TypedPattern

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Pattern"

Description

A pattern that has a user defined type.

Attributes

N/A

Associations

kind : UserDefinedType [1] The user defined type associated with this pattern.

Invariant

true

Semantics

Typed patterns are used to ease interchange and consistent interpretation of complex patterns across tools and
organizations. Based on the type given to the pattern, certain pattern associations can be expected to be present or not
present on a particular pattern instance.

9.3.5.2 TypedResource

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Resource"

Essence, Version 1.0 99

Description

A resource that has a user defined type.

Attributes

N/A

Associations

kind : UserDefinedType [1] The user defined type associated with this resource.

Invariant

true

Semantics

Typed resources are used to ease interchange and consistent interpretation of resources across tools and organizations.
Based on the type given to a resource, tools and users can decide how to interpret, display, and use the content of the
resource.

9.3.5.3 TypedTag

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Tag"

Description

A tag that has a user defined type.

Attributes

N/A

Associations

kind : UserDefinedType [1] The user defined type associated with this tag.

Invariant

true

Semantics

Typed tags are used to ease interchange and consistent interpretation of tags across tools and organizations. Based on the
type given to the tag, certain values can be expected to be used on a particular tag instance. Descriptions provided in the
type of the tag can be displayed as introductory information to a list of all language elements tagged with this tag.

9.3.5.4 UserDefinedType

Package: Competency
isAbstract: No
Generalizations: "LanguageElement"

Description

A user defined type is a named type containing a description and constraints that can be used to detail patterns, resources,
and tags.

100 Essence, Version 1.0

Attributes

name : String [1] The name of the type.
description : String [1] A short description of what the type is about.
constraint : String [1] Rules that apply to all constructs using this type. It is recommended to use

either plain text or OCL.

Associations

N/A

Invariant

true

Semantics

User defined types are intended to detail, explain, and constrain the proper usage of particular patterns, resources, or tags.

The constraints defined by the type are meant to be evaluated on each typed element that is associated with this type.
Elements on which the evaluation fails are considered ill-defined. For example, a constraint on a type called “triary
pattern” could express that this type is intended to be used on typed patterns with at exactly three pattern associations.
Hence, using this type on other elements than typed patterns would be reported as ill-defined usage. Similarly, using this
type on a typed pattern with more or less than three pattern associations would also be ill-defined usage.

9.3.6 View
A user interacts through the realization of one or more views as he or she works according to a kernel, practice or
method. The views provide a means for users to interact with a relevant subset, and relevant details, of Essence language
constructs as they are used to describe a method instance.

The overall objective with the views is to be able to provide the right and purposeful support for different types of users
and at different points in time; and as a consequence, help in avoiding information overflow of language construct detail.
This is because different types of users have different needs or interests in the details of a method instance description.
Some users need very little details whereas others need more.

For this purpose, the Essence language introduces the ViewSelection construct to support the specification of view
contents.

Figure 28 – View::Language elements

Essence, Version 1.0 101

Figure 29 – View::View selection

9.3.6.1 FeatureSelection

Package: View
isAbstract: No
Generalizations: "LanguageElement"

Description

A reference to a construct feature such as a particular attribute or association.

Attributes

featureName : String [1] The name of the referred feature, such as the name of an attribute or the role
name of an association.

Associations

construct : BasicElement [1] The construct that defines the feature.

Invariant

true

Semantics

A feature selection names a feature (property or association) from a language construct which is to be included in a view.
The feature is identified by its name, since property and association names are unique within a language element. If a
feature with the given name does not exist, this feature selection does not contribute anything to the view.

9.3.6.2 ViewSelection

Package: View
isAbstract: No
Generalizations: "LanguageElement"

Description

A ViewSelection selects a subset of constructs and construct features such as attributes and associations.

Attributes

name : String [1] The name of the view.

102 Essence, Version 1.0

description : String [1] A description of the view, including the purpose of the view.

Associations

constructSelection : LanguageElement
[1..*]

The selected constructs (such as Alpha, State, etc) to be included in the view.

featureSelection : FeatureSelection
[1..*]

The selected features, such as attributes and associations of constructs to be
included in the view.

includedViewSelection :
ViewSelection [*]

ViewSelections to be included in this ViewSelection (provides a means to
build extended and more sophisticated views based on existing/smaller
views).

Invariant

-- The featureSelections in a ViewSelection V refers to constructs that are part
of constructSelections in V.
self.featureSelection->forAll(fs | self.constructSelection-
>inludes(fs.construct))

Semantics

A view selection names the language constructs to be included in a view. From these constructs, only features named by a
feature selection are actually included in the view. A view selection may include other view selections.

A view selection only contains information about the elements and features included in a view. It does not contain any
layout or presentation information.

9.3.6.2.1 Example ViewSelection 1

name: “Alpha state view”

description: “The purpose of this view is to show a particular state of an alpha including the checkpoints of the state”

includedViewSelection: none

Table 15 – Included features for Example ViewSelection 1

Included selection number Feature name Basic element

1 name (attribute) Alpha

2 name (attribute) State

3 description (attribute) Checkpoint

4 states (role name) Alpha

This example ViewSelection can be realized with a state card i.e. the following is one possible implementation of the
ViewSelection:

Essence,

So in Es
however
somethin

In other w

9.3.6.2.

name: “B

descripti
value in h
has high
expected
work pro

included

Included

1

2

3

4

5

6

7

8

, Version 1.0

sence, the Vie
how to visu

ng that is supp

words, it must

.2 Examp

Basic user vie

ion: “The pur
having some

h priority. Thi
d to get value
oducts of the p

dViewSelectio

d selection nu

ewSelection h
ualize the card
ported by the g

t be the purpo

ple ViewSel

w”

rpose of this v
kind of descri
is user will u
from. This vi

practices.”

on: none

Table 16

umber F

n

b

d

e

n

b

d

l

helps us defin
d (read: impl
graphical synta

se of the grap

ection 2

view is to sup
iptions of the

use a minimu
iew includes

6 – Included

Feature name

name (attribut

briefDescriptio

description (at

elements (role

name (attribut

briefDescriptio

description (at

evelOfDetail

ne the subset
lementing the
ax of the lang

phical syntax t

pport a user th
practices. Th

um number o
simple narrat

d features fo

e

te)

on (attribute)

ttribute)

e name)

te)

on (attribute)

ttribute)

(role name)

of informatio
e view) is not
guage.

to implement (

hat has very l
his is expected
f language co
tive descriptio

or Example

on to be show
t specified by

(support) relev

little interest i
d to be the larg
onstructs that
ons of each pr

ViewSelecti

Basic elem

Practice

Practice

Practice

Practice

WorkProd

WorkProd

WorkProd

WorkProd

wn on this spe
y the view it

vant views of

in methods, b
rgest user grou
t large user g
ractice of inte

ion 2

ment

duct

duct

duct

duct

ecific type of
tself but is in

f the language

but understand
up and the one
groups still ca
erest, includin

 103

card;
nstead

.

ds the
e that
an be
ng the

104 Essence, Version 1.0

9 name (attribute) LevelOfDetail

10 briefDescription (attribute) LevelOfDetail

11 checkListItem (role name) LevelOfDetail

12 name (attribute) Checkpoint

13 description (attribute) Checkpoint

Notes: Selection 4 returns all elements of the practice, but only the ones used in subsequent selections are actually
included. Selections 8-13 are all about including work product levels of detail in the view.

9.3.6.2.3 Example ViewSelection 3

name: “Extended user view including alphas”

description: “The purpose of this view is to extend and complement the basic user view above (example 2) by also
including alphas and the state of alphas.”

includedViewSelection: “Basic user view” (example 2 above) + “Alpha state view” (example 1 above)

Table 17 – Included features for Example ViewSelection 3

Included selection number Feature name Basic element

1 lowerBound (attribute) WorkProductManifest

2 upperBound (attribute) WorkProductManifest

3 alpha (role name) WorkProductManifest

4 workproduct (role name) WorkProductManifest

5 superAlpha (role name) AlphaContainment

6 subordinateAlpha (role name) AlphaContainment

7 lowerBound (attribute) AlphaContainment

8 upperBound (attribute) AlphaContainment

9.3.6.2.4 Example ViewSelection 4

name: “Yet another extended user view including activity flows”

description: “The purpose of this view is to extend and complement the extended user view above (example 3) by
supporting complete activity flows; this will allow users to view sequences of activities, parallel activities, and
understand how activities manipulate alphas and work products. Here the users can also view criteria for alpha state
changes, and understand how to progress alpha states in terms of activities.”

includedViewSelection: “Extended user view including alphas” (example 3 above)

Essence, Version 1.0 105

Table 18 – Included features for Example ViewSelection 4

Included selection number Feature name Construct

1 name (attribute) Activity

2 briefDescription (attribute) Activity

3 approach (attribute) Activity

4 inputWorkProduct (role name) Activity

5 outputWorkProduct (role name) Activity

6 inputAlpha (role name) Activity

7 outputAlpha (role name) Activity

8 completionCriterion (role name) Activity

9 description (attribute) CompletionCriterion

10 state (role name) CompletionCriterion

9.4 Composition and Modification

9.4.1 Introduction
Composition and modification of language constructs are done via merge and extension operations in the Essence
language. They are the means by which more sophisticated and powerful constructs are built from smaller, simpler ones.

Extension refers to the modification or customization of an element to suit a new context. For example, a Work Product
defined in practice P1 may be modified in the context of a wider practice P2 that uses P1 as a component. The extension
mechanism in Essence allows elements to be modified or customized, and has two key features:

 Extension is “aspectual” in the sense that the element being modified is oblivious of the modification.

 Extension is non-destructive, in the sense that the original element still exists and is available.

Merging refers to the capability to put elements together to build more powerful elements form simpler ones. The main
use of merging is to put practices together where they are to be used together in an endeavor. In this context, merging
allows the way of working on a project to be established by selecting and composing “best in class” practices addressing
different aspects of the endeavor.

9.4.2 Notations and Conventions
Each instance of a language element owns a set of attributes. Each attribute can be thought of a (label, value) pair. In
particular each instance of a language element has an attribute with label = “name”.

The notation Λ(P1.xyz) denotes the set of attribute labels in P1.xyz. Type discipline guarantees that instances of
language elements of the same type from different practices have the same set of attribute labels, and that the values of a
given label have the same type. We allow that, in general, any label may have a null value.

Names of language elements are scoped by element groups. This means that, in the context of an element group, each
name is unique. Names can be prefixed by the name of an element group to ensure uniqueness in larger contexts. If P3 is
a Practice containing two Practices P1 and P2, then P1.xyz refers to the xyz that is provided by P1, and P2.xyz refers to
the xyz that is provided by P2.

106 Essence, Version 1.0

9.4.3 Extending

9.4.3.1 Basic Extension Algorithm

Extending allows local changes to be made to the values of the attributes of an element in the context of a element group.
Extension works via the use of an instance of ExtensionElement added to an element group and referencing the element
being extended. If a language element is extended by an element group A, its original attribute values remain unchanged.
However, from the perspective of A the values are seen as modified by the extension. Whether the results of extending
are persisted or derived “on the fly” is a tooling issue and not part of the standard.

An association with role “targetElement” connects the ExtensionElement with the element to be extended. The attribute
“targetAttribute” of ExtensionElement denotes the attribute to be extended. The attribute “extensionFunction” provides a
post-condition in OCL for a function with signature:

extend(input : targetAttribute.oclType()) : targetAttribute.oclType()

In this signature:

 The input to the function is a single value for the attribute to be extended.

 The result of the function a single value to be used for the attribute.

 null is an allowed value, both on input and output.

9.4.3.2 Renaming and Suppression

The set of attributes that can be given an extension function includes the “name, so it is possible for the extended object
to be given a different name.

An extending function that sets the “name” attribute of an element to null suppresses this element. Hence it does not
appear (is not visible) in the extended practice. Note that it is not “physically” deleted, so is still present and visible in
the source (non-extended) practice. It is not allowed to define an extending function that suppresses language elements
that have their attribute “isSuppressable” set to false.

An element may not be suppressed in an element group if it is referenced by another, unsuppressed, named element in
the same group via an association that is mandatory for this element, resulting in a “dangling reference”. Tools should
support “cascading extension” whereby the user is prompted to make suitable extensions to referencing elements when
suppressing an element, to ensure that such “dangling references” are resolved.

Unnamed elements that represent binary links between language elements (i.e. links represented by
“AlphaContainment”, “WorkProductManifest”, and “ActivityAssociation”) must be suppressed automatically if at least
one of their ends is suppressed.

9.4.3.3 Standard Extension Functions

A template post-condition for an extending function that provides a fixed output independent of the inputs (assuming
attribute type String) looks like this:

post: result = “someFixedOutput”

A template post-condition for an extending function that performs a set of search and replace operation on the inputs
(assuming attribute type String) looks like this:

post: result = input.regexReplaceAll(OrderedSet(Tuple(“somePattern”,
“someReplacement”)))

where regexReplaceAll is a function that performs a succession of string replacement based on pattern matching
with POSIX Extended Regular Expressions.

At a minimum, tools are expected to supply extension functions that satisfy these post conditions, and may support
more.

Essence, Version 1.0 107

9.4.3.4 Precedence and Chaining

Extensions are cumulative. If a given element is extended in element group A, and element group A is referenced by
element group B which also extends x, then the extensions added to x by B are applied on top of those added by A.

Where an element is subject to both extensions and merging (see below) by the same element group, the extensions are
applied first, before merging.

9.4.4 Merging
Suppose that two element groups, B and C, are being composed in an element group A. If the set of names of all elements
referenced by B and C are disjoint, then the discipline that each name is unique in the context of an element group is
maintained. In the event that an element referenced by B and an element referenced by C have the same name, these two
elements have to be merged in A. The merged element has the same name as the elements being merged, and ensures
uniqueness of this name in A. The merging is local to A and does not affect the elements as seen in B or C, so the
contents of B and C remain unchanged by the merging operation.

If two elements from practices being composed share the same name and type “by accident”, but are actually
semantically distinct and should not be merged, then the name of one of one them must be changed using the Extension
mechanism. This prevents the two elements being merged.

The language elements “AlphaContainment”, “WorkProductManifest”, and “ActivityAssociation”, that do not have a
“name” attribute and that represent links between language elements are automatically equipped with a derived name that
is only visible for the purpose of detecting and handling merge conflicts. The name is composed of the names of the
associated language elements by concatenating them in the order “superAlpha”+”subordianteAlpha”,
“alpha”+”workProduct”, or “end1”+”end2”, respectively.

If certain conditions apply, merging is automatic, without the need for user input required. In other cases, where there is a
“merge conflict”, user input is required to resolve the conflict. Whether the results of merging (with or without a Merge
Resolution Object) are persisted or derived “on the fly” is a tooling issue and not part of the standard.

An element group in which there are unresolved merge conflicts is considered badly formed. Tools must detect badly
formed element groups and prompt the user to resolve the issue. Also, tools should prevent a badly formed element
group from being referenced (used by another element group) or being instantiated (at level-0) for enactment. If an
element group that is already referenced or instantiated is rendered badly formed by an edit to the model, the tool should
prompt the user to resolve the issue.

9.4.4.1 Basic Merging Algorithm

Let A be the element group to show the merged element, B and C be two element groups contained by A, and B.x and
C.x two elements of same name that are subject to the merge operation.

There is no “merge conflict” between B and C provided that:

a) B.x and C.x are of the same type, so that Λ(A.x) = Λ(B.x) = Λ(C.x)

b) For all λ in Λ(A.x), if both B.x and C.x offer a non-null value for λ, then the values offered must be equal.

If there is no merge conflict between B.x and C.x, then A.x is formed automatically, using the non-null value for
attributes where one offers a value for that label and the other does not.

Where more than two elements are being merged and there is no merge conflict when the elements are considered pair-
wise, then the automatically merged element can be formed in the obvious way.

9.4.4.2 Merge Conflict Resolution

In the event of a merge conflict, user action is required to resolve the conflict as follows:

a) If B.x and C.x are not of the same type, one or other must be renamed using an ExtensionElement. The two
elements are then not subject to merge.

b) If B.x and C.x are of the same type, but have a label where both offer a different non-null value, an element of
type “MergeResolution” must be defined in A to give a value of the label in the merged object. This must be

108 Essence, Version 1.0

done for each label in A where there is a conflict.

When defining a MergeResolution, the attributes “targetName” and “targetAttribute” denote the element name and
attribute whose value is being resolved. The value of “targetName” must be not null, as it is not possible (or meaningful)
to merge suppressed elements.

The attribute “resolutionFunction” provides a post-condition in OCL for a function with signature:

merge(input : Set(Tuple(String,targetAttribute.oclType())) :
targetAttribute.oclType()

In this signature:

 The input to the function is a set of pairs, each pair being an element group name and the value for the target
attribute in that element group. Suppose an attribute in an element with name x is given value “London” by the
element named x in element group B and value “Paris” by the element named x in element group C. The input
to a merge function for merging this attribute of x in an element group A that references both B and C would be:
{(B, “London”),(C, “Paris”)}.

 The result of the function is a single value. This is the value to be used for the target attribute in A.

 null is an allowed value, both on input and output.

Using an element of type “MergeResolution” is mandatory if there is a merge conflict, but may be used even where there
is no merge conflict to “override” the results of the standard merge. Since merging is based on name, it is not possible to
define a MergeResolution on the “name” attribute of element being merged; so the “name” attribute can only be changed
using an ExtensionElement.

9.4.4.3 Standard Merge Resolution Functions

A template post-condition for a merge function that provides a fixed output independent of the inputs (assuming attribute
type String) looks like this:

post: result = “someFixedOutput”

A template post-condition for a merge function that picks the value from one of the elements being merged looks like
this:

post: result = input.selectValueFrom(“someElementGroupName”)

where selectValueFrom is a function that selects the second of the pair in input where the first in the pair equals
the name supplied as a parameter.

At a minimum, tools are expected to supply merge functions that satisfy these post conditions, and may support more.

9.4.4.4 Precedence and Chaining

If elements B.x and C.x are being merged in A, and B and/or C extend x, then it is the extended versions of x that are
merged to form A.x. Similarly, if A merges B.x and C.x and another element group then references A, that element group
may further extend A.x or even merge it with another element named x.

9.4.5 Example
As an example, Figure 30 shows the conceptual model of two practices P1 and P2 that are to be composed into a new
practice P3. In the result of the composition, activity CC should be inserted between AA and BB as depicted at the
bottom of the figure. This is an arbitrary choice by the practice author. Any other valid position for CC (including
keeping it unconnected from AA and BB) would be possible as a target result as well.

Essence,

Figure 3
show

The orig
to be tak

Note tha
and cons
result.

The resu
no merge

, Version 1.0

30 – Two pr
wn in light g

ginal object str
ken:

A new practi

A new exten
way that it ge

A new activit

at there is also
sequently inse

ulting object s
e resolution o

ractices P1 a
grey. Eleme

ructure of P1

ce object P3 h

nsion element
ets an associat

ty association

o the alternativ
ert a new asso

structure for P
bjects are nee

and P2 and
nts that are

owned

and P2 is sho

has to be creat

object has to
tion from AA

n object has to

ve to modify t
ociation from

P3 is shown in
eded in this ex

their merge
modified by

d by P3 are s

own in Figure

ted that refers

o be created f
to CC.

 be created fo

the activity as
m AA to CC. B

n Figure 32. S
xample.

e result P3. E
y P3 are sho
shown in bla

31. To achiev

to P1 and P2

for modifying

r the link betw

ssociation from
Both alternativ

Since there are

Elements th
own in dark
ack.

ve the desired

.

the activity a

ween CC and B

m AA to BB in
ves are equal

e no merge co

hat are referr
k grey. Elem

composition,

association fro

BB.

in a way that i
with respect

onflicts in the

rred to by P3
ents that ar

 several steps

om AA to BB

it links CC an
to complexity

e resulting pra

 109

3 are
re

s have

B in a

nd BB
y and

actice,

110 Essence, Version 1.0

Figure 31 – Object diagrams for P1 and P2

Figure 32 – Partial object diagram for P3

Essence, Version 1.0 111

In some cases, it is even not necessary to use an extension object in practice that merges other practices. An example for
this case is shown in Figure 33. Practices P4 and P5 are very similar. They both add a new alpha as subordinate alpha to
some other alpha owned by a kernel. These two practices can be composed to a new practice P6 without the need for an
extension element object or merge resolution object. In P6, the kernel alpha will have two subordinate alphas, one from
each of the composed practices.

However, a practice author may desire to sequence the subordinate alphas in a way that the one from P5 becomes
subordinate alpha of the one from P4, instead of being subordinate to the kernel alpha. In this case, an extension element
object is needed again as shown in Figure 34. It modifies the alpha containment in an appropriate way, changing the
super alpha of the alpha contained in practice P5.

Figure 33 – Object diagrams for P4 and P5

Figure 34 – Partial object diagrams for P6

112 Essence, Version 1.0

9.5 Dynamic Semantics
Since the language defines not only static elements like Alphas and Work Products, but also states associated with them,
it can not only be used to express static method descriptions, but also dynamic semantics. Using the states of the single
Alphas and their constituent Work Products, the overall state of a software engineering endeavor can be expressed. Based
on this, denotational semantics can be defined for a function that supports a team in the enactment of a software
engineering endeavor, by using the current state and a specification of the desired state to create a “to-do” list of activities
to be performed by the team.

In a large or complex endeavor this function may be provided by a specialist tool. In smaller endeavors, where the
overhead of tool support cannot be justified, the function represents a manual recipe that can be followed to determine
guidance on how to proceed.

9.5.1 Domain classes

9.5.1.1 Recap of Meta-modeling Levels

As stated in Section 9.1.1, the Essence language is defined as a set of constructs which are language elements defined in
the context of a meta-modeling framework. In this framework all the constructs of the language, as described in Section
9.2, are at level 2.

 Level 3 – Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

 Level 2 – Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

 Level 1 – Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

 Level 0 – Occurrence: the run-time instances, i.e. these are the real-life elements in a running development
effort.

A Method Engineer using the Essence language to model the Practices and its associated Activities, Work Products etc.,
would work at level 1. For instance, to describe an agile Practice like Scrum the Method Engineer would define activities
such as “Sprint Planning Meeting” and “Daily Scrum”, and work products such as “Sprint Goal” at level 1. This is
exactly analogous to a Software Engineer using the UML language (also described as constructs at level 2) to model an
order processing system by define classes such as “Customer, “Order” and “Product” and use cases such as “Place an
Order” and “Check Stock Availability” at level 1.

A team using Scrum on a project would be working at level 0. The project team would hold “Sprint Planning Meetings”
and “Daily Scrums” and each would be a level 0 instance of the corresponding activity at level 1, and the goal set for
each Sprint would be a level 0 instance of the “Sprint Goal” work product defined at level 1. This is exactly analogous to
the creation of Customers “Bill Smith” and “Andy Jones” and products “Flange” and “Grommet” at level 0 in the
executing order processing system.

9.5.1.2 Naming Convention

In order to define the dynamic semantics it is necessary to refer to the inhabitants of levels 1 and 0 as well as those of
level 2. In order to make it clear at which level a named term belongs, we use the following naming convention:

 X (an unadorned name) is a language Construct at level 2 as defined in Section 9.2, such as Alpha or Work
Product.

 my_X (prefixed) is a Type at level 1 created by instantiating X. So if X is Work Product, my_WorkProduct could
be “Use case narrative”.

 my_X_instance is an Occurrence at level 0 by instantiating my_X. So if X is Work Product,
my_WorkProduct_instance could be the use case narrative on how to withdraw cash from an atm.

This naming convention is used in the type signatures of functions of the dynamic semantics, so that it is clear to which

Essence, Version 1.0 113

level of the framework the terms used in the function signature belong. Consider the function guidance which returns
a set of activities to be performed to a take an endeavor forward to the next stage. The type signature of this function is:

guidance: (my_Alpha, State)* (my_Alpha, Activity*)*

The term my_Alpha in this type signature has a name prefixed with my_ and so is at level 1. The terms State and
Activity, on the other hand, have an unadorned name and so are at level 2. Notice here that we allow a function type
signature to use elements from different levels of the meta-modeling framework.

9.5.1.3 Abstract Superclasses

To ensure that occurrences at level 0 are endowed with the attributes they need to support the dynamic semantics, we
define a set of abstract superclasses at level 1 from which the types defined at level 1 are subclassed. For instance the
superclass my_Alpha ensures that every Alpha occurrence at level 0 will have attributes “instanceName”, “currentState”,
“workProductInstances” and “subAlphaInstances”. These superclasses are named consistently with the naming
convention described above.

The relationships between these superclasses and the classes created from the level 2 constructs in shown in Figure .

Figure 35 – The Essence language framework

9.5.1.3.1 my_Alpha

The superclass to all level 1 types instantiated from the level 2 construct “Alpha”, i.e. the Alphas in some Kernel (such as
“Requirements”) or Practice as well as to Sub-Alphas added by a particular Practice (such as “Use Case”).

Attributes

instanceName : String [1] The name of an occurrence (e.g., Requirements for the XYZ Project)
currentState : my_State [1] A pointer to the current State of an occurrence (e.g., to the state

“Coherent”)

9.5.1.3.2 my_State

The superclass to all level 1 types instantiated from the level 2 construct “State”, i.e. the States of some Alpha.

Attributes

N/A

114 Essence, Version 1.0

9.5.1.3.3 my_WorkProduct

The superclass to all level 1 types instantiated from the level 2 construct “Work Product”, i.e. to all templates
representing physical documents used in the software engineering endeavor, such as “Use Case narrative”.

Attributes

instanceName : String [1] The name of an occurrence (e.g., Use Case Narrative for Withdraw Cash)
currentlevelOfDetail :
my_LevelOfDetail [1]

A pointer to the current LevelOfDetail of an occurrence (e.g., to the level
“Sketch”)

9.5.1.3.4 my_LevelOfDetail

The superclass to all level 1 types instantiated from the level 2 construct “LevelOfDetail”, i.e. the level of detail of some
work product.

Attributes

N/A

9.5.2 Operational Semantics
In this section we describe and illustrate the operational semantics. This covers how the level 0 model is created, how the
state of the endeavor is tracked in the model and how the model can be used to give advice based on how to progress the
state of the endeavor. For the last of these we provide a formal denotational semantics.

The execution of operational semantics happens inside an execution environment. The execution environment can be a
tool, a cognitive activity possibly supported by handwritten notes, or any combination of these and other suitable means.
The notion of instance used in this section thus refers to an entity inside the execution environment that represents some
entity outside the environment. Both the entity inside the execution environment and the one outside of it may or may not
be physical. For example, a physical entity being a Work Product outside the execution environment can be represented
by a non-physical entity in a tool. As an inverse example, the Alpha “Requirements” is a non-physical entity outside the
execution environment, but can be represented physically by a piece of paper attached to a whiteboard. Since there is no
automatic update from the outside to the inside of the execution environment, the manual creation and update of
instances is explained in sections 9.5.2.1 and 9.5.2.2.

The execution environment may be used to collect and manage more information than the ones defined in the abstract
superclasses in section 9.5.1.3. It may also be used to execute more functions than the ones defined in sections 9.5.2.4
and 9.5.2.5.

Besides the instances belonging to the level 0 model, the execution environment holds a complete copy of the method
description (i.e. the level 1 model) selected for the particular endeavor for reference. Any lookup to that model necessary
for the creation of instances or during the execution of functions refers only to this copy. Any adaptation made to the
method description by the team during the endeavor applies only to this copy as well. If two teams start to work
according to the same method, adaptations made by one team do not affect the other team, because all adaptations stay
local to copy of the method description owned by the respective execution environment. However, an adapted copy of a
method description can at any point in time be declared to be a new method description and a team can then use a copy of
this new method description in their execution environment.

9.5.2.1 Populating the Level 0 Model

Generally, the appropriate Alpha instances and associated Work Product instances are created as soon as the respective
Alpha is considered in the endeavor. Some may exist right from the start of the endeavor (such as the Alpha instances for
Stakeholders or Requirements), while others may be created later, at the appropriate point in the conduct of a practice.
This is usually the case for Sub-Alpha instances, which are instantiated as needed through the endeavor. The model of a
practice is used as the basis for instantiating the appropriate sets of Alpha instances and associated Work Product
instances, using the Work Product Manifests defined for the Practice as templates. Although the mechanisms of
instantiation and updating Alpha instances and their associated Work Product instances can be formalized using
computational semantics, it is not an automatic process and must be triggered explicitly by the team.

Essence, Version 1.0 115

A team is also free to create instances in their model that do not derive by instantiating from Practice templates, and thus
tailor the use of a Practice or even depart from it to create a partially or completely customized approach.

9.5.2.2 Determining the Overall State

Determining the overall state of the endeavor is done by determining the states of each individual Alpha instance in the
endeavor. This is done using the checkpoints associated with each state of the respective state graphs; and the state is
determined to be the most advanced in the state graph consistent with the currently met checkpoints. This means the state
that has:

1. all currently fulfilled checkpoints met; and

2. no outgoing transition to a state that has also all currently fulfilled checkpoints met.

This is illustrated in Figure 36. Here the most advanced state of Software System “XYZ” consistent with the checkpoints
that have been met (shown as ticked) is “Useable”.

Figure 36 – Determination of State using Check Points

The determination of Alpha instance states can happen at any point in time since evaluating the checkpoints is a manual
activity. When checkpoints are evaluated the result can be that an Alpha instance regresses, its current state being set
back to some earlier state of its lifecycle. This happens if re-evaluation determines that a checkpoint previously thought
to have been met is now deemed not to have been met.

9.5.2.3 Generating Guidance

In an actual running software engineering endeavor, a team will want to get guidance on what to do next.

Once the overall state of the endeavor is determined, the model can be used to generate such advice. This can be
understood as a guidance function that takes a set of pairs of (Alpha instance and target State) as its argument and returns
a set of newly instantiated Activities: a “to-do” list to be performed by the team. This function is invoked with an actual
argument consisting of a set of pairs, each pair consisting of a my_Alpha_instance (at level 0) and a my_State (at level
1). For each pair the function returns guidance on how to progress each my_Alpha_instance to its target state my_State.
This guidance is of the form of a set of newly instantiated activities (at level 0) for each my_Alpha_instance, constituting
a to-do list to be performed by the team to advance its state. The essential idea is to assemble the to-do list by examining
each Alpha instance given to the function and finding those activities that have the target state of that Alpha instance
among its completion criteria.

116 Essence, Version 1.0

Note that an Essence model does not specify how the team works on a set of activities. This is the dictated by the
policies, rules or advice of the practices being used on the endeavor. These may require or suggest that certain activities
should be prioritized, done in a particular sequence, divided among sub-teams, and so on. The team uses its expertise in
the practices to work out exactly how to perform the activities required. Nor is there any ultimate guarantee that the team
will follow the advice or perform the suggested activities competently: in that sense the model is an “open loop” control
system. However, regular re-evaluation of the checkpoints and the consequent re-setting of the Alpha instance states will
provide feedback to the team on whether or not their work is advancing as hoped.

Several other functions can be defined to measure the progress and health of the endeavor, for instance to determine
whether the right set of my_Alpha_Instances and my_WorkProduct_Instances is in place, or to determine whether the
endeavor has reached its final state. These have not been defined here.

9.5.2.4 Formal definition of the Guidance Function

In this section, we provide a formal description of the operational semantics in terms of the function guidance. This
function takes a set of pairs of (Alpha instance and target State) as its argument and returns a set of to-do lists, one for
each Alpha instance and target State provided to the function.

The essential idea is to compile the to-do lists by examining each Alpha instance given to the function and finding those
activities that have the target state of that Alpha instance among its completion criteria. However, the target state
specified for an Alpha instance may not be the next state in the state graph of the Alpha, and so a function
statesAfter is used to find the intermediate states. The to-do list generated consists of the activities required to
progress the Alpha instance through all these states in order to reach the specified target.

First we specify the statesAfter function. Suppose that a state graph has a sequence of states S0, S1, S2, S3. If
statesAfter is called with (S0, S3) it will return {S1, S2, S3}. In other words, all the states passed through to get to S3

but not including the starting state S0. This is easier to specify in terms of a function fullPath that generates the full
set of states including the starting state. So if fullPath is called with (S0, S3) it will return {S0, S1, S2, S3}.

statesAfter: (State, State) State*
statesAfter (s1, s2) =
fullPath(s1, s2) – {s1}

fullPath: (State, State) State*
fullPath (s1, s2) =
 if ((s1.successor = null) (s1 = s2)) {s1}
 else {s1} fullPath(s1.successor, s2)

We use this to specify the guidance function. Each (Alpha instance, target State) pair is taken in turn.

guidance: (my_Alpha, State)* (my_alpha, Activity*)*
guidance (cas) =
 let as cas
 in to_do(as) guidance (cas {as})

The to_do function takes a single (Alpha instance, target State) pair and creates the set of activities that are required to
progress the Alpha instance to the required target State. This is done by finding those activity types that have the target
state or any intermediate state among its completion criteria. The function statesAfter is used to find the
intermediate states.

Note that the completion criteria (defined at level 1) are defined using activity types (at level 1). The function to_do
determines the set of activity types required for each Alpha instance.

to_do: (my_Alpha, State) (my_alpha, Activity*)
to_do (,) =
let cw = { w | (’ ∩completionStates(w.completionCriterion) ≠)
 (’ statesAfter(.currentState,)) }
 in (,cw)

Finally, we specify the function completionStates which is used by the to_do function to determine the set of states

Essence, Version 1.0 117

forming the completion criteria of an activity.

completionStates: CompletionCriterion* State*
completionStates (ccc) =

let cc ccc and rs = cc.state
in rscompletionStates(ccc – {cc})

9.5.2.5 Further functions
As well as the Guidance Function, a number of other functions can be defined to support enactment. This section
describes a number of these as illustration. It is expected that any Essence tool will support at least these functions.

The to_do function used to generate guidance makes use of the property “currentState” on my_Alpha. It is not specified
whether tool vendors allow users to set this property directly or consider it a derived property. However, if it is handled as
a derived property, it has to be derived in the following way:
derive_current_state: my_Alphamy_State
derive_current_state (a) =
 let s = { s | s a.states {ps | ps.successor=s} = }
 in fullfilledSuccessorState(s)

fullfilledSuccessorState: my_Statemy_State
fullfilledSuccessorState (s) =
 if (s.successor =) {s}
 else
 let mc = {c | c s.successor.checkpoints not c.isFullfilled}
 in (if (mc =) {fullfilledSuccessor(s.successor)} else {s})

The same can be done for “currentLevelOfDetail” on my_WorkProduct:
derive_current_level_of_detail: my_WorkProductmy_LevelOfDetail
derive_current_level_of_detail (wp) =
 let s = { l | l wp.levelOfDetail {pl | pl.successor=l} = }
 in fullfilledSuccessorLevel(l)

fullfilledSuccessorLevel: my_LevelOfDetailmy_LevelOfDetail
fullfilledSuccessorLevel (l) =
 if (l.successor =) {l}
 else
 let mc = {c | c s.successor.checkpoints not c.isFullfilled}
 in (if (mc =) {fullfilledSuccessor(s.successor)} else {l})

Before using the guidance function on a set of (Alpha instance, target State) pairs, a user may want to derive a set of
sensible target states from the current states.
nextAlphaStatesToReach: my_Alpha* my_State*
nextAlphaStateToReach(a) =
 let oa a
 in oa.currentState.successornextAlphaStateToReach(a – {oa})

118 Essence, Version 1.0

9.6 Adaptation

9.6.1 Alignment of Level 0 and Level 1
A key objective of Essence is to be able to support “adaptation”, meaning that a practices and methods can be adapted to
meet particular project needs and to incorporate refinements that emerge from experience gained through enactment. It is
required that such adaptation can take place during the course of a project, and this means that it must be possible to
amend the level 1 model of a Method at a time when instances of the Method at level 0, representing enactments of the
Method on an endeavor, are in existence. As a level 0 model must always be a valid instance of level 1, tool functionality
is required to keep the two properly aligned.

What this involves depends on how much level 0 information the Essence tool holds. While the Essence tool will hold
the complete level 1 model (defining the Kernel and Method being used, and the associated Practices, Alphas, Sub-
Alphas, Activity Spaces, Activities and Work Products) it may only hold a partial level 0 model. The content of the level
0 model hosted in the Essence Tool is driven by the key enactment aims of Essence:

 To enable the overall state of the endeavor to be recorded and tracked.

 To support moving the endeavor forward using the functions of the Dynamic Semantics.

Meeting these enactment aims requires that the Essence tool hosts level 0 instances of, at a minimum:

 The Method itself

 The Kernel used by the Method , along with its top level Alphas and Activity Spaces

 The Practices used by the Method, along with top level Alphas and Work Products associated with each Practice.

However much of the detailed level 0 information generated on an endeavor during enactment will not be in the Essence
tool itself but federated across a whole set of tools and environments used on a project, such as:

 Project Planning Tools

 Requirements Management Tools

 Risk and Issue Repositories/Management Tools

 CASE Tools and IDEs (for various models and code artifacts)

 Content Management Systems/Folders/Repositories of documents, spreadsheets etc.

In some cases it may be appropriate to keep “proxy” information about such items in the Essence tool. For instance,
details of project risks may be maintained in a specialized Risk Management Tool, but a corresponding set of Risk Alphas
may be kept in the Essence tool to represent the state of each Risk for overall management purposes. In this case, it is
clearly necessary to keep the Essence Risk Alphas and the detail in the Risk Management Tool properly synchronized.

In the context of adaptation it is necessary to think about both of:

 Internal alignment between level 1 and level 0, for that part of the level 0 model that is hosted by Essence

 External alignment between level 1 and level 0, for that part of the level 0 model that is federated to other tools.

These are considered below, after a general discussion of the adaptation mechanism.

9.6.2 Adaptation Approach
The general approach to adaptation is provided by the extension and merging mechanisms described earlier in Section
9.4.

For concreteness, consider this example: An endeavor is using a method M that combines practices P1 and P2. So M, P1
and P2 have been described at level 1 in Essence and instantiated (in Essence and across the supporting tool federation)
for enactment. Now suppose that, with the endeavor underway and the level 0 model populated, P1 is to be refined and
the project migrated to use the refined version. Typically, this is done as follows:

Essence, Version 1.0 119

 First a new Practice P1’ is created that references P1and extends (modifies) those elements that are to be refined,
These elements are given new names in their extended versions in P1’.

 Secondly, the new Practice P1’ is added to M. Elements in P1’ that are not refined, so are the same as the old
version in P1, are automatically merged.

The level 0 model is still a valid instance of the new level 1 model of M, but at this stage none of the new (refined)
elements in P1’ are populated at level 0. Population of these requires migration, and the Essence tool should support this
as described in the following sections.

9.6.3 Internal Migration
This section covers tool support for migration of level 0 instances that are hosted in the Essence tool. In this case, the tool
should support automatic migration as described below.

Suppose that an element x in P1 has been refined to x’ in P1’. The user can ask the Essence tool to create a “migration
function” x -> x’. To do this, the tool provides functionality for the user to:

 Enter an OCL function for each attribute of x’ specifying how this attribute should be populated from the
existing level 0 model

 Specify whether, after creating an instance of x’ the old instance of x should be retained or deleted.

(The reason for allowing the x instance to be retained is that a refinement might “split” x into two elements: x’ and x’’. In
this case, two migration functions (x -> x’ and x –> x’’) would be needed and an x instance only deleted after the second
is run.)

The user can then ask the Essence tool to execute the migration. The tool will prompt the user to specify whether all
instances of x are to be migrated, or allow the user to select those that are to be migrated. It will then execute the
migration function, which will create and an instance of x’ for each selected instance of x and populate its attributes using
the OCL function. It will then (if requested) delete the instance of x

Note that, because the merged model for M supports both x and x’, if desired the migration may be undertaken incremen-
tally by running the migration function repeatedly over time. Once all instances of “legacy” elements (such as x) have
been migrated to their refined version (x’), P1 can be deleted from M.

9.6.4 External Migration
This section covers tool support for migration of level 0 instances that are not hosted in the Essence tool. In this case,
how migration is handled depends on whether and how level 0 information in other tools are synchronized with the
Essence tool.

Where the Essence tool holds “proxies” of level 0 items, migration may be handled as described for internal migration.
Alternatively the mechanism used to maintain synchronization between the detail in federated systems and the Essence
model may be used to achieve migration, by importing new proxy data that conform to the refined model.

For cases where the level 0 data is entirely in a federated tool, any required migration is handled entirely in the external
tool.

9.7 Graphical Syntax

9.7.1 Specification Format
The graphical syntax provides a visual form for each construct. Each graphical notation is introduced in a separate
section that provides a description and symbol of the syntax. This section includes subsections for Style Guidelines and
Examples when applicable.

Diagrams are introduced by listing the graphical nodes and links to be included in the diagrams. Each node and link
refers to the syntax specification of an individual element.

120

9.7.2
Most of t
for the pu

9.7.3
The defa
the const
shown in
symbol c

This prov

Style Gu

Exampl

Figure

9.7.4
The follo

9.7.4.1

An Alpha
placed be

Style Gu

Relev
the constructs
urpose of bein

Some constru
where the stat
any specific s

Constructs lik
instead visual

Defau
ault notation fo
truct’s type (le
n guillemets ab
can be shown a

vides a default

uidelines

Center the na

Center the na

Include the sy

es

e 37 – Exam

View
owing sections

 Alpha

a is visualized
elow the symb

uidelines

Center the na

vant Sym
s in the abstrac
ng visualized.

ucts are visual
tes of the state
symbol.

ke Completion
lized textually

ult Notati
for a meta-clas
evel 1 in the a
bove the type
above the typ

t and unique v

ame of the con

ame of the con

ymbol of the c

mple visualiz

1: Alpha
s define releva

d by the follow
bol:

ame of the Alp

mbols
ct syntax of th
However:

lized in terms
e graph can be

n Criterion an
y only.

ion for M
ss construct in

abstract syntax
e name. Altern
e name in the

visualization o

nstruct’s type i

nstruct itself in

construct abov

zations of th

as and th
ant symbols fo

wing symbol,

Fig

pha in boldface

he Kernel Lan

s of complete
e visualized in

nd Required C

Meta-Clas
n the abstract
x). The name o
natively, if the
rectangle.

of each meta-c

in boldface.

n plain face w

ve the type nam

he Alpha me

heir State
for View 1: Alp

, either contai

gure 38 – Alp

e, either withi

nguage require

diagrams and
n a diagram bu

Competency m

ss Const
syntax is a s

of the constru
e meta-class c

class construc

ithin guilleme

me and aligne

eta-class con

es
phas and the S

ining the nam

pha symbol

in the symbol

e a visual repr

d may not requ
ut where State

may not requir

tructs
olid-outline re

uct itself (level
construct defin

t in the abstra

ets above the t

ed to the right.

nstruct and

States.

e of the Alpha

or below the

 Es

resentation in

quire a symbol
e Graph in itse

ire symbols of

ectangle conta
l 2 in the abst
nes its own di

act syntax.

type name, or

.

d its Softwar

a or with the

symbol.

ssence, Versio

 terms of a sy

l, e.g. State G
elf does not re

f their own bu

aining the nam
tract syntax) c
istinct symbol

alternatively:

re System ty

name of the A

on 1.0

ymbol

Graph,
equire

ut are

me of
can be
l, this

:

ype

Alpha

Essence,

Exampl

9.7.4.2

An Alpha
connecte
upper bou

Style Gu

Exampl

9.7.4.3

A Kernel
the Kerne

, Version 1.0

es

2 Alpha

a Association
d segments. T
unds of the as

uidelines

Center the na

An open arro
indicates the
only and has n

If lower and u
“0..3”; if the l
value of -1 im

es

Figu
Software

3 Kernel

l is visualized
el placed belo

Associati

is visualized b
The associatio
ssociated alph

ame of the Alp

owhead ‘>’ o
order of readi
no general sem

upper bounds
lower and upp

mply an “arbitr

ure 41 – Alp
e System Alp

l

by a hexagon
ow the symbol

Figure 3

on

by a solid line
on line is adorn
as placed near

Figure 40

pha Associatio

or ‘<’ next to
ing and under
mantic meanin

are included,
per bound are
rary number o

pha Associa
pha, read as

n containing a
l.

Fig

39 – Softwar

e connecting t
rned with the n
r the end of th

0 – Alpha As

on above or un

o the name o
rstanding the a
ng.

 use the notat
 the same, exc

of instances” a

ation betwee
s: “The Soft

a cogwheel; ei

gure 42 – Ker

re System A

two associated
name of the a

he line connec

ssociation s

nder the assoc

f the associat
association. T

tion “<lower-b
clude the “..”
and denote thi

en the Requ
tware System

ither containin

rnel symbol

Alpha

d Alphas. The
association, an
cting each alph

ymbol

iation line in p

tion and poin
This arrowhead

bound>..<upp
and just show
is as “*”.

irements Alp
m fulfills the

ng the name of

l

 line may con
nd optionally
ha.

plain face.

nting along th
d is for docum

per-bound>” su
w one of the bo

lpha and the
e Requireme

f the Kernel o

nsist of one or
with the lowe

he association
mentation purp

uch as for exa
ounds. Let a b

e
ents.”

or with the nam

 121

more
er and

n line
poses

ample
bound

me of

122

Style Gu

Exampl

9.7.4.4

A State is

Style Gu

Exampl

9.7.4.5

A State S
State. Th

Exampl

uidelines

Center the na

es

4 State

s visualized by

uidelines

Center the na

es

5 State S

Successor asso
he line may co

es

Figure 4

ame of the Ker

F

y a rectangle w

ame of the Stat

Successo

ociation is vis
nsist of one o

47 – Transiti

rnel in boldfac

Figure 43 – K

with rounded

Fig

te in boldface

Figure 4

r

sualized by a
r more connec

Figure 46 –

ion from the

ce, either with

Kernel for S

corners conta

gure 44 – St

e.

45 – Mileston

solid line with
cted segments

– State Succ

e Objectives

hin the symbol

Software Eng

aining the nam

tate symbol

nes Agreed

h an open arr
s.

cessor asso

s Agreed Sta

l or below the

gineering

me of the State

State

owhead conne

ociation

ate to the Pl

 Es

e symbol.

e.

necting a State

lan Agreed S

ssence, Versio

e with its succ

State

on 1.0

cessor

Essence,

9.7.4.6

This sect
informati

9.7.4.6.

Node Ty

Alpha	

Link Typ

Alpha As

Exampl

Refer to k

9.7.4.6.

Node Ty

State	

Link Typ

State Suc

Style Gu

, Version 1.0

6 Diagra

tion defines th
ion about the

.1 Alpha S

ype

pe

ssociation	

es

kernel examp

.2 State G

ype

pe

ccessor

uidelines

Place the star

Use State suc
successors wh
specific seque
corresponding

ams

he graphical el
concrete notat

Structure D

Table 1

Table

les.

Graph Diag

Table

Tabl

rt state at the to

ccessors to vis
hen there are
ence from star
g successors.

lements that m
tion for each e

Diagram

19 – Graphic

Symbol

20 – Graphi

Symbol

ram

e 21 – Graph

Symbol

le 22 – Grap

Symbol

op of the diag

sualize a logic
mutually exc

rt to stop, we

may be shown
element can b

cal nodes in

ical links in

hical nodes

phical links i

gram, and the

cal sequence t
clusive state s
may assume t

n in diagrams,
be found.

n Alpha Stru

Alpha Struc

in State Gra

	

in State Gra

	

stop state at th

through states
sets involved
that any loop

and provides

ucture diagra

Refere

Section

cture diagra

Refere

Section

aph diagram

Refere

Section

ph diagram

Refere

Section

he bottom of t

, from start to
in the sequen

or alternation

s cross referen

ams

ence

n 9.7.4.1 Alph

ams

ence

n 9.7.4.2 Alph

ms

ence

n 9.7.4.4 State

ms

ence

n 9.7.4.5 State

the diagram.

o stop. Only v
nce from star
is permitted w

nces where det

ha.

ha Association

e.

e Successor.

isualize altern
t to stop. Wit
without visual

 123

tailed

n.

native
thin a
lizing

124

Exampl

9.7.4.7

As a com
importan
things yo
a practice

In particu
hands-on
practition

9.7.4.7.

A definit
syntax re

es

7 Cards

mplement to th
nt aspects of a
ou need to rem
e is a correspo

ular, cards ar
n and natural f
ners in their w

.1 The An

tion card is vi
elated to the el

he symbols an
an element in

member about
onding set of c

re straightforw
for practitione

way of working

natomy of a

isualized as a
lement. The fo

Figure

nd diagrams w
n the Kernel L
an element. I

cards.

ward to manif
ers to put on th
g.

a Definition

solid-outline
ollowing is a b

e 48 – State G

we use a card m
Language. A

In many cases

fest as physic
he table, play

n Card

rectangle in l
basic anatomy

Graph exam

metaphor (as i
card presents
, all that a pra

cal entities (pr
around with,

landscape for
y although var

mple

in 5x3 inch in
s a succinct s
actitioner need

rint them on
and reason ab

mat containin
riations are all

 Es

ndex cards) to
summary of t
ds to be able t

paper) which
bout; all for th

ng a mix of sy
lowed:

ssence, Versio

 visualize the
he most impo

to apply a kern

h makes them
he purpose to

ymbols and te

on 1.0

most
ortant
nel or

m very
guide

extual

Essence,

Style Gu

9.7.4.7.

An Alpha

Exampl

, Version 1.0

F

uidelines

Place the ow
element name

.2 Alpha D

a definition ca

Card left-han

Card right-h
Qualities, and

es

Figure 49 – A

wner name in
e top-left.

Definition C

ard is defined

nd-side: State

hand-side: Br
d contained el

Figu

A basic defin

boldface at th

Card

as follows:

e Graph Diagr

ief Descriptio
ements (sub-A

ure 50 – Soft

nition card a

the top-right o

ram for the Al

on of the Alph
Alphas or Wor

tware Syste

anatomy to

of the card an

lpha.

ha, as well as
rk Products, if

em Alpha De

visualize an

nd use a font

a listing of its
f any).

efinition Car

n element

t with smaller

s description i

rd

r size than fo

including Ess

 125

or the

ential

126

9.7.4.7.

A detail c
related to

Style Gu

9.7.4.7.

An Alpha

.3 The An

card is visual
o the element.

uidelines

Place the elem
element name

If there are se
of 6 in total; b

If several card
example “1(2

.4 Alpha S

a State detail c

Card header

Card body: C

natomy of a

ized as a solid
The followin

Figure 51 –

ment name in
e below.

everal sub-ele
by annotating

ds are needed
2)” for card nu

State Detai

card is defined

r: Alpha symb

Checkpoints o

a Detail Car

d-outline recta
g is a basic an

– A basic de

boldface at th

ements, visual
the sub-eleme

to present the
umber 1 out of

il Card

d as follows:

bol and name a

of the Alpha S

rd

angle in portr
natomy althou

etail card an

the top-right o

lize the order
ent symbol.

e details of a s
f 2 in total.

at the top, foll

State.

rait format con
ugh variations

natomy to vi

of the card and

of the sub-ele

sub-element, i

lowed by a St

ntaining a mix
are allowed:

isualize an e

d use a font w

ement as for e

include a card

ate symbol.

 Es

x of symbols

element

with larger siz

example “4/6”

d number at th

ssence, Versio

and textual sy

ze than for the

” for number

he bottom-righ

on 1.0

yntax

e sub-

4 out

ht, for

Essence,

Exampl

9.7.5
The follo

9.7.5.1

A Work P
of the Wo

Style Gu

Exampl

, Version 1.0

es

View
owing sections

 Work P

Product is visu
ork Product pl

uidelines

Center the na

es

Figu

2: Sub-A
s define releva

Product

ualized by the
laced below th

ame of the Wo

ure 52 – Soft

Alphas an
ant symbols fo

e following sy
he symbol:

Figure

rk Product in

Figure 54

tware Syste

nd Work
for View 2: Su

ymbol, either

53 – Work P

boldface, eith

– Iteration P

em Alpha De

k Product
ub-Alphas and

containing the

Product sym

her within the

Plan Work P

efinition Car

ts
Work Produc

e name of the

mbol

symbol or bel

Product

rd

cts.

 Work Produc

low the symb

ct or with the

ol.

 127

name

128

9.7.5.2

An Alpha
more con
Alpha; an

As an alt
Alpha sy
not show

Style Gu

Exampl

Figure

2 Alpha

a Containmen
nnected segme
nd with the lo

ternative, an A
ymbol. In this
wing its conten

uidelines

Arrange the l
top-down hier

If there are tw
the same hori

If lower and u
“0..3”; if the l
value of -1 im

If the encomp
place the nam

es

e 56 – Softw

Containm

nt is visualized
ents. The line
wer and uppe

Alpha Contai
case, the Alph

nt, or whether

line vertically
rarchy.

wo or more sub
izontal level a

upper bounds
lower and upp

mply an “arbitr

passment nota
me of the Alph

ware System

ment

d by a solid li
e is adorned w
r bounds of th

Figure 55

nment can be
ha symbol is a
it is expanded

y with the sup

b-Alphas of th
nd by merging

are included,
per bound are
rary number o

ation is used, p
ha under the sy

super-Alph
w

ine connecting
with a filled di
he sub-Alpha p

– Alpha Co

e visualized b
adorned with
d (-) and show

per-Alpha on t

he same super
g the lines to

 use the notat
 the same, exc

of instances” a

place the +/- s
ymbol.

ha and three
with visualize

g a super- and
iamond place
placed near th

ntainment s

by encompassi
a +/- sign to d

wing its conten

top and the su

r-Alpha, they
the super-Alp

tion “<lower-b
clude the “..”
and denote thi

sign top-left w

e sub-Alphas
ed bounds

d a sub-Alpha
d at the end o

he end of the l

symbol

ing the sub-A
denote whethe
nt.

ub-Alpha at th

may be visual
ha into a sing

bound>..<upp
and just show
is as “*”.

within the Alph

s: Architect

 Es

a. The line ma
of the line con
line connectin

Alpha symbols
er it is collaps

he bottom, the

lized as a tree
gle segment.

per-bound>” su
w one of the bo

pha symbol, an

ture, Compo

ssence, Versio

ay consist of o
nnecting the s

ng the sub-Alp

s within the s
sed (+) and th

ereby visualiz

 by being plac

uch as for exa
ounds. Let a b

nd when expa

onent, and T

on 1.0

one or
super-
pha.

super-
ereby

zing a

ced at

ample
bound

anded,

Test

Essence,

9.7.5.3

A Work P
one or m
Alpha; an
Product.

Note that
their con
are conne

As an alt
Alpha sy
not show

Style Gu

Exampl

Figu

9.7.5.4

A Level o

, Version 1.0

3 Work P

Product Mani
more connected

nd with the lo

t this is the s
ntext; that is, w
ected (Work P

ternative, a W
ymbol. In this
wing its conten

uidelines

Arrange the l
left-to-right h

If there are tw
the same hori

If lower and u
“0..3”; if the l
value of -1 im

If the encomp
place the nam

es

ure 58 – Sof

4 Level o

of Detail is vi

Product M

fest is visuali
d segments. T
ower and upp

ame symbol a
whether two A
Product Manif

Work Product
case, the Alph

nt, or whether

line horizonta
hierarchy.

wo or more W
izontal level a

upper bounds
lower and upp

mply an “arbitr

passment nota
me of the Alph

ftware Syste

of Detail

sualized by a

Manifest

zed by a solid
The line is ado
per bounds of

Figure 57 –

as the Alpha
Alphas are con
fest).

Manifest can
ha symbol is a
it is expanded

lly with the A

Work Products
nd by merging

are included,
per bound are
rary number o

ation is used, p
ha under the sy

em Alpha an
Descrip

trapezoid con

Figure

d line connect
orned with a f

f the Work Pro

Work Produ

Containment
nnected (Alph

n be visualize
adorned with
d (-) and show

Alpha to the le

 of the same A
g the lines to

 use the notat
 the same, exc

of instances” a

place the +/- s
ymbol.

nd three Wor
ption with vis

ntaining the na

59 – Level o

ting an Alpha
filled diamond
oduct placed n

uct Manifes

symbol, how
ha Containmen

d by encomp
a +/- sign to d

wing its conten

eft and the Wo

Alpha, they m
the Alpha into

tion “<lower-b
clude the “..”
and denote thi

sign top-left w

rk Products
sualized bou

ame of the Lev

of Detail sym

and a Work P
d placed at th
near the end o

t symbol

ever the symb
nt), or whethe

assing the Wo
denote whethe
nt.

ork Product to

may be visuali
o a single segm

bound>..<upp
and just show
is as “*”.

within the Alph

s: Design Mo
unds

vel of Detail.

mbol

Product. The l
he end of the l
of the line co

bols are discr
er an Alpha an

Work Product s
er it is collaps

o the right, the

ized as a tree
ment.

per-bound>” su
w one of the bo

pha symbol, an

odel, Build,

line may cons
line connectin

onnecting the

riminated base
nd a Work Pr

symbols withi
sed (+) and th

ereby visualiz

by being plac

uch as for exa
ounds. Let a b

nd when expa

and Release

 129

sist of
ng the
Work

ed on
oduct

in the
ereby

zing a

ced at

ample
bound

anded,

e

130

Style Gu

Exampl

F

9.7.5.5

A Level
Detail. Th

Exampl

9.7.5.6

A Practic
below the

Style Gu

uidelines

Center the na

Use a dashed
sufficient leve

es

Figure 61 –

5 Level o

of Detail Suc
he line may c

es

Figure 63

6 Practic

ce is visualize
e symbol.

uidelines

Center the na

ame of the Lev

d border line i
el.

Generator-r

of Detail S

ccessor associ
onsist of one o

– Formal M

ce

ed by a hexago

ame of the Pra

vel of Detail in

n the trapezoi

Figure

ready Model

Successor

ation is visua
or more conne

Figure 62

Model Level o

on; either con

Figu

ctice in boldfa

n boldface.

id for a Level

60 – Sketch

l Level of De

r

alized by a sol
ected segment

2 – Level of

of Detail is a

ntaining the na

ure 64 – Prac

face, either wit

l of Detail tha

h Level of De

etail that is

lid line with a
ts.

Detail Succ

a successor

ame of the Pra

ctice symbo

thin the symbo

at is a success

etail

a successor

an open arrow

cessor

r of the Sket

actice or with

ol

ol or below th

 Es

sor (or transit

r of a suffic

whead connec

tch Level of

the name of t

he symbol.

ssence, Versio

ive successor)

ient level

cting two Leve

f Detail

the Practice p

on 1.0

) of a

els of

placed

Essence,

Exampl

9.7.5.7

This sect
informati

9.7.5.7.

Node Ty

Alpha

Work Pro

Link Typ

Alpha Co

Work Pro

, Version 1.0

es

7 Diagra

tion defines th
ion about the

.1 Alpha H

ype

oduct	

pe

ontainment

oduct Manifes

ams

he graphical el
concrete notat

Hierarchy D

Table 2

Table 2

st

Figure 65

lements that m
tion for each e

Diagram

23 – Graphic

Symbol

24 – Graphi

Symbol

5 – Scrum Es

may be shown
element can b

cal nodes in

ical links in A

ssentials Pr

n in diagrams,
be found.

n Alpha Hiera

Alpha Hiera

ractice

and provides

archy diagra

Refere

Section

Section

archy diagra

Refere

See 9.7

See 9.7

s cross referen

rams

ence

n 9.7.4.1 Alph

n 9.7.5.1 Wor

ams

ence

7.5.2 Alpha C

7.5.3 Work Pr

nces where det

ha.

rk Product.

Containment.

roduct Manife

 131

tailed

est.

132

Exampl

Figu

9.7.5.7.

Node Ty

Level of

Link Typ

Level of

Style Gu

es

ure 66 – Alph

.2 Level o

ype

Detail

pe

Detail Succes

uidelines

Place the first

Use Level	of	
last.

ha Containm

of Detail Dia

Table 2

Table

ssor	

t Level of Det

f Detail	Succe

ment and Wo

agram

25 – Graphic

Symbol

26 – Graph

Symbol

tail at the top o

essor	arrows

ork Product
Alph

ical nodes in

ical links in

of the diagram

to visualize a

t Manifest re
ha

n Level of D

	

 Level of De

	

m, and the last

a logical sequ

elationships

etail diagram

Refere

Section

etail diagram

Refere

Section
cessor.

t Level of Det

ence through

 Es

s of the Soft

ms.

ence

n 9.7.5.4 Leve

ms.

ence

n 9.7.5.5 Lev
.	

tail at the botto

levels, from

ssence, Versio

tware System

el of Detail.	

vel of Detail

om of the diag

the first one t

on 1.0

m

Suc-

gram.

to the

Essence,

Exampl

9.7.5.8

9.7.5.8.

A Work P

Exampl

, Version 1.0

es

8 Cards

.1 Work P

Product defini

Card left-han

Card right-h
Work Product

es

F

Product De

ition card is de

nd-side: Leve

hand-side: Bri
ts, if any).

Figure 68

Figure 67 – L

finition Ca

efined as follo

el of Detail Di

ief Description

– Architect

Level of Det

rd

ows:

iagram for the

n of the Work

tural Model

tail diagram

e Work Produc

k Product, as w

Work Produ

m example

ct.

well as a listin

uct Definition

ng of related e

n Card

lements (Alph

 133

has or

134

9.7.6
The follo

9.7.6.1

An Activ
Activity p

Style Gu

Exampl

9.7.6.2

An Activ
or with th

Style Gu

Exampl

View
owing sections

 Activit

vity is visualiz
placed below

uidelines

Center the na

es

2 Activit

vity Space is v
he name of the

uidelines

Center the na

es

3: Activi
s define releva

ty

zed by the fo
the symbol:

ame of the Act

ty Space

visualized by t
e Activity Spa

ame of the Act

Fig

ty Space
ant symbols fo

llowing symb

Figu

tivity in boldfa

Figure 70 –

the following
ace placed bel

Figure

tivity Space in

gure 72 – Sp

es and A
for View 3: Ac

bol, either con

ure 69 – Act

face, either wit

– Sprint Ret

dashed-outlin
low the symbo

71 – Activity

n boldface, eit

pecify the S

Activities
ctivity Spaces

ntaining the n

tivity symbo

thin the symbo

trospective A

ne symbol, eith
ol:

y Space sym

her within the

oftware Acti

and Activities

name of the A

ol

ol or below th

Activity

her containing

mbol

e symbol or be

ivity Space

 Es

s.

Activity or wit

he symbol.

g the name of

elow the symb

ssence, Versio

th the name o

f the Activity S

bol.

on 1.0

of the

Space

Essence,

9.7.6.3

An Activ
Activity.
the end o

Note that
are discri
Alpha an
connecte

As an alt
Space sy
thereby n

Style Gu

Exampl

Figure 7

Figur

Figur

, Version 1.0

3 Activit

vity Associatio
The line may

of the line conn

t this is the sa
iminated base
nd a Work Pr
d (Activity As

ternative, an A
mbol. In this

not showing it

uidelines

Arrange the l
a left-to-right

If there are tw
at the same ho

If the encomp
expanded, pla

es

74 – Specify

re 75 – Spec

re 76 – Spec

ty Associa

on that is of t
y consist of on
necting the se

Figure

ame symbol a
ed on their con
roduct are con
ssociation).

Activity Asso
case, the Acti
ts content, or w

ine horizontal
t hierarchy.

wo or more A
orizontal leve

passment nota
ace the name o

y the Softwa

cify the Soft

cify the Soft

ation (“par

the “part-of”
ne or more co

econd member

73 – Activit

as the Alpha C
ntext; that is,
nnected (Wor

ociation can b
vity Space sy
whether it is e

lly with the A

ctivities of the
l and by merg

ation is used,
of the Activity

are Activity S

tware Activi

tware Activi

rt-of” kind

kind is visua
onnected segm
r of the associ

ty Associati

Containment a
whether two

rk Product M

e visualized b
ymbol is adorn
expanded (-) a

Activity Space

e same Activi
ging the lines t

place the +/-
y Space under

Space and t
Case

ity Space, en

ity Space, en

d)

lized by a sol
ments. The lin
iation.

ion (“part-of

and Work Pro
Alphas are co
anifest), or w

by encompass
ned with a +/-
and showing it

to the left and

ity Space, they
to the Alpha in

sign top-left
r the symbol.

two Activitie
es

ncompassm

ncompassm

lid line conne
ne is adorned

f” kind) sym

oduct Manifes
onnected (Alp
whether Activi

sing the Activ
sign to denot

ts content.

d the Activity

y may be visu
nto a single se

within the Ac

es: Identify U

ment notatio

ment notatio

ecting an Acti
with a filled

mbol

st symbol, how
pha Containme
ity Spaces an

vity symbols w
te whether it i

y to the right, t

ualized as a tr
egment.

ctivity Space

Use Cases a

on with expa

on with colla

ivity Space an
diamond plac

wever the sym
ent), or wheth

nd/or Activitie

within the Ac
s collapsed (+

thereby visual

ree by being p

symbol, and

and Specify

anded symb

apsed symb

 135

nd an
ced at

mbols
her an
es are

ctivity
+) and

lizing

placed

when

y Use

ol

ol

136

9.7.6.4

An Activ
Activity
triangular

The asso

Style Gu

Exampl

9.7.6.5

A Compe

4 Activit

vity Associati
Space symbo
r arrowhead p

ciation line is

uidelines

Lines may be

Center the kin

If the Activit
excluded; oth

es

Figure 78

5 Compe

etency is visua

ty Associa

on that is not
ols. The line m
placed at the e

optionally ad

e drawn using

nd of the Activ

ty Association
her kinds shou

– Activity A

etency

alized by a 5-p

ation (othe

t of the “part
may consist o

end of the line

dorned with th

Figure 77 –

curved segme

vity Associati

n kind is “sta
uld be explicitl

Association a

point star sym

Figure

er than the

t-of” kind is v
of one or mo
 connecting en

he kind of the

– Activity As

ents.

ion above or u

art-before-star
ly shown.

among four

mbol with the n

e 79 – Comp

e “part-of”

visualized by
ore connected
nd2.

association.

ssociation s

under the asso

rt” it is assum

r activities in

name of the C

petency sym

” kind)

a solid line
segments. Th

symbol.

ciation line in

med to be mo

n a Scrum E

Competency pl

mbol

 Es

connecting tw
he line is ado

n plain face.

ost common a

Essentials p

laced below th

ssence, Versio

wo Activity a
orned with a

and can thereb

practice

he symbol:

on 1.0

and/or
filled

by be

Essence,

Style Gu

Exampl

9.7.6.6

A Compe
visualize

Style Gu

Exampl

9.7.6.7

This sect
informati

9.7.6.7.

Node Ty

Activity

Activity

, Version 1.0

uidelines

Center the na

es

6 Compe

etency Level
d by surround

uidelines

Center the na

Place the leve

es

7 Diagra

tion defines th
ion about the

.1 Activity

ype

Space

ame of the Com

etency Le

is visualized
ding it with a c

Fi

ame of the Com

el circle bottom

Fig

ams

he graphical el
concrete notat

y Space Hi

Table 27 – G

mpetency in b

Figure 8

vel

by a rectangle
circle.

igure 81 – C

mpetency Lev

m right within

gure 82 – Bu

lements that m
tion for each e

erarchy Di

Graphical no

Symbol

boldface below

80 – Leaders

e containing t

Competency

vel in boldface

n the Compete

uilds Teams

may be shown
element can b

agram

odes in Acti

w the symbol.

ship Compet

the name and

y Level symb

e.

ency Level sym

Competenc

n in diagrams,
be found.

ivity Space H

tency

level of the C

bol, level n

mbol.

cy Level, lev

and provides

Hierarchy di

Refere

Section

Section

Competency L

vel 3

s cross referen

diagrams.

ence

n 9.7.6.2 Acti

n 9.7.6.1 Acti

Level. The lev

nces where det

ivity Space.

ivity.

 137

vel is

tailed

138

Link Typ

Activity
kind)	

Exampl

Refer to 9

9.7.6.7.

Node	Ty

Activity	

Link	Typ

Activity
“part-of”

Style Gu

Exampl

Refer to 9

9.7.6.7.

Node	Ty

Compete

Style Gu

pe

Association

es

9.7.6.3 Activi

.2 Activity

ype	

pe	

Association
” kind)	

uidelines

Arrange the A

es

9.7.6.4 Activi

.3 Compe

ype	

ency Level	

uidelines

Place compet
bottom and th

Use a slightly

Table 28 –

(“part-of”

ty Manifest ex

y Flow Diag

Table

Table 30 -

(not of the

Activity Assoc

ty Association

etency Leve

Table 31

tency level sy
he highest leve

y smaller symb

Graphical li

Symbol

xample.

gram

29 – Graphi

Symbol	

Graphical li

Symbol	

ciation arrow p

n

el Diagram

– Graphica

Symbol	

mbols for the
el is at the top

bol for each c

inks in Activ

ical nodes i

links in Activ

pointing from

m

al nodes in C

e same compe
p.

ompetency le

vity Space H

in Activity F

vity Flow Hi

m left-to-right o

Competency

tency on top o

vel symbol pl

Hierarchy dia

Refere

See 9
(“part-

Flow diagram

Refere

Section

ierarchy dia

Refere

See 9.7
er than

or from top-to

y Level diagr

Refere

Section

of each other,

aced on top o

 Es

iagrams.

ence

9.7.6.3 Acti
-of” kind).	

ms.

ence	

n 9.7.6.1 Acti

agrams.

ence	

7.6.4 Activity
n the “part-of”

o-bottom, exce

grams.

ence	

n 9.7.6.6 Com

, where the lo

of another (larg

ssence, Versio

ivity Associ

ivity.	

y Association
” kind).	

ept for loop-ba

mpetency Leve

west level is a

ger) symbol.

on 1.0

iation

(oth-

acks.

el.	

at the

Essence,

Exampl

Fi

9.7.6.8

9.7.6.8.

An Activ

Exa

9.7.6.8.

An Activ

, Version 1.0

es

igure 83 – C

8 Cards

.1 Activity

vity definition

Card left-han
output symbo
completion cr

Card right-h
approaches.

amples

.2 Activity

vity Space defi

Card left-ha

Competency

y Definition

card is define

nd-side: Sym
ols are annotat
riteria).

hand-side: B

Figure

y Space De

finition card is

and-side: Sym

y Level diagr

n Card

ed as follows:

mbols for activ
ted with the la

Brief descripti

e 84 – Identif

efinition Ca

s defined as fo

mbols for acti

ram exampl

vity inputs, req
atest reached

ion of the a

fy User Stor

ard

ollows:

ivity inputs an

le, for one sp

quired compet
State and Lev

activity, as w

ries activity

nd outputs. A

pecific Com

tencies, and ou
vel of Detail w

ell as a listi

definition c

Alpha output s

mpetency wi

outputs. Alpha
within the act

ing of compl

card

symbols are a

ith 3 levels

a and Work Pr
tivity (as part

letion criteria

annotated wit

 139

oduct
of its

a and

th the

140

Exa

9.7.6.8.

A Compe

latest reached

Card right-h
contained act

amples

.3 Compe

etency definiti

Card left-han

Card right-h

d State within

hand-side: Br
ivities.

Figure 8

etency Defi

ion card is def

nd-side: Com

hand-side: Bri

the activity sp

rief descriptio

85 – Test the

nition Card

fined as follow

mpetency Leve

ief description

pace (as part o

on of the activ

e System Ac

d

ws:

el Diagram for

n of the Comp

of its completi

vity space, as

ctivity Spac

r the Compete

petency.

ion criteria).

s well as a lis

e definition

ency.

 Es

sting of comp

card

ssence, Versio

pletion criteria

on 1.0

a and

Essence,

Exampl

9.7.7
The follo

9.7.7.1

A Pattern

Style Gu

Exampl

, Version 1.0

es

View
owing sections

 Pattern

n is visualized

uidelines

Center the na

If the Pattern
within < and

es

Figu

4: Patter
s define releva

n

d by the follow

ame of the Patt

n is a Typed P
>.

Fig

ure 86 – Lead

rns
ant symbols fo

wing symbol, w

Figu

tern in boldfac

Pattern of a sp

gure 88 – Pro

dership Com

for View 4: Pat

with the name

ure 87 – Pat

ce below the s

pecific kind, a

ogrammer P

mpetency de

tterns.

e of the Pattern

ttern symbo

symbol.

annotate the n

Pattern of th

efinition car

n placed below

ol

ame of the pa

he Role kind

rd

w the symbol:

attern with the

d

:

e name of the

 141

e kind

142

9.7.7.2

A Pattern
element
Associati

The own
adorned w

Style Gu

Exampl

Figure 9

9.7.7.3

This sect
informati

9.7.7.3.

Node Ty

Pattern	

Symbol of
within the

2 Pattern

n Association
within the p
ion is placed w

ning Pattern m
with a filled d

uidelines

Center the na

Visualizing th

es

90 – Program

3 Diagra

tion defines th
ion about the

.1 Pattern

ype

of any associa
e Pattern

n Associa

is visualized
attern. Each
within the circ

may also option
diamond place

ame of the Patt

he owning Pat

mmer Patte

ams

he graphical el
concrete notat

n Diagram

Table 3

ated element

ation

d by one or m
line may con

cle.

nally be visua
ed at the end o

Figure 89

tern Associati

ttern is option

rn with Patt
Produc

lements that m
tion for each e

2 – Graphic

Symbol

All La

more solid line
nsist of one

alized by conn
of the line con

– Pattern As

ion in boldface

nal.

tern Associa
cts: Source

may be shown
element can b

cal nodes in

anguage Eleme

es originating
or more con

necting it with
necting the Pa

ssociation s

e within the c

ation “Work
code and B

n in diagrams,
be found.

Alpha Hiera

ent symbols

g from a circl
nnected segme

h the circle us
attern.

symbol

ircle.

ks on” that in
Build

and provides

archy diagra

Refere

Section

 Es

le that connec
ments. The nam

sing a solid lin

n turn assoc

s cross referen

ams.

ence

n 9.7.7.1 Patte

ssence, Versio

cts each assoc
me of the Pa

ne; this line is

ciates two W

nces where det

ern.

on 1.0

ciated
attern

s then

Work

tailed

Essence,

Link Typ

Pattern A

Exampl

See secti

9.7.7.4

9.7.7.4.

A Pattern

Exampl

, Version 1.0

pe

Association	

es

on 9.7.7.2 Pat

4 Cards

.1 Pattern

n definition ca

Card left-ha
free-form text

Card right-h

es

Figure 9

Table 3

ttern Associati

n Definition

ard is defined

nd-side: Patte
t or picture vi

hand-side: Bri

91 – Program

33 – Graphic

Symbol

ion.

n Card

as follows:

ern Diagram v
sualizing the e

ief Description

mmer Patte

cal links in A

visualizing Pa
essence of the

n of the Patter

ern Definition

Alpha Hiera

attern Associa
e Pattern.

rn.

n Card, incl

rchy diagra

Refere

See 9.7

tions owned b

uding Patte

ams.

ence

7.7.2 Pattern A

by the Pattern

ern Associat

Association.	

n, or optionally

tions

 143

y any

144

Figure

e 92 – Rate

of Change P

Pattern Defi

inition Card,
hand s

d, including f
side

free-form tex

 Es

ext and pictu

ssence, Versio

ure on the le

on 1.0

eft-

Essence, Version 1.0 145

9.8 Textual Syntax
This section provides a textual syntax for the SEMAT Kernel Language and describes its mapping to the abstract syntax
presented above. The rules of the textual syntax are given in BNF-style.

The textual syntax does not specify any rules for file handling. Specifically it assumes that everything to be expressed
using this syntax is written in one single file. However, parser implementations may include facilities for merging files
prior to parsing in order to handle contents which are split over multiple files.

References between elements specified in the textual syntax can be made via identifiers. Each element that can be
referred to must define a unique identifier. Every element that wants to refer to another element can use this identifier as
a reference. Identifiers are unique within the containment hierarchy. Using an identifier outside the containment hierarchy
requires to prefix it with the identifiers of its parent element(s).

9.8.1 Rules
The following notation is used in this subsection:

 (…)* means 0 or more occurrences

 (…)? means 0 or 1 occurrence

 (…)+ means 1 or more occurrences

 | denotes alternatives

 ID is a special token representing a string which can be used as an identifier for the defined element

 …Ref denotes a token representing an identifier of some element (i.e. not the defined element)

9.8.1.1 Root Elements

The root element representing the file containing the specification is defined as:

Model:
 elements+=GroupElement*;

An empty file is a valid root. If not empty, the file may contain an arbitrary number of elements.

There are several categories of elements, not necessarily excluding each other:

GroupElement:
 Kernel | Practice | Library | PracticeAsset | Method;

PatternElement:
 Alpha | AlphaAssociation | AlphaContainment | WorkProduct |
WorkProductManifest | Activity | ActivitySpace | ActivityAssociation | Competency
| Pattern;

PracticeElement:
 PatternElement | ExtensionElement | MergeResolution | UserDefinedType;

AnyElement:
 GroupElement | PracticeElement | State | Level | CheckListItem |
CompetencyLevel | PatternAssociation | Tag | Resource;

146 Essence, Version 1.0

KernelElement:
 Alpha | AlphaAssociation | AlphaContainment | ActivitySpace | Competency |
Kernel | ExtensionElement | MergeResolution | UserDefinedType;

StateOrLevel:
 State | Level;

AlphaOrWorkProduct:
 Alpha | WorkProduct;

AbstractActivity:
 Activity | ActivitySpace;

PracticeContent:
 PracticeElement | Practice | PracticeAsset;

MethodContent:
 Practice | ExtensionElement | MergeResolution;

9.8.1.2 Element Groups

A Kernel declaration is defined as:

Kernel:
 'kernel' ID ':' STRING
 ('with rules' STRING)?
 ('owns' '{' KernelElement* '}')?
 ('uses' '{' KernelElementRef (',' KernelElementRef)* '}')?
 (AddedTags)?;

This maps directly to the language element with the same name. The ID creates a unique identifier for this Kernel, which
maps to the attribute “name”. The first STRING is considered as content for attribute “description”. The second STRING
is considered as content for attribute “consistencyRule”. If this optional bit is not used, the empty string must be used for
attribute “consistencyRule”. KernelElementRef is a unique identifier to an element to be contained in this kernel.

A Practice declaration is defined similarly as:

Practice:
 'practice' ID ':' STRING
 'with objective' STRING
 ('with measures' STRING(',' STRING)*)?
 ('with entry' STRING(',' STRING)*)?
 ('with result' STRING(',' STRING)*)?
 ('with rules' STRING)?
 ('owns' '{' PracticeElement* '}')?
 ('uses' '{' PracticeContentRef (',' PracticeContentRef)* '}')?
 (AddedTags)?;

The STRINGs used in the clauses for objective, measures, entry, and result are considered as contents for the respective
attributes. Missing clauses are handled as above.

Declarations for Library, PracticeAsset and Method are similar:

Essence, Version 1.0 147

Library:
 'library' ID ':' STRING
 ('owns' '{' GroupElement* '}')?
 ('uses' '{' GroupElementRef (',' GroupElementRef)* '}')?
 (AddedTags)?;

PracticeAsset:
 'practiceAsset' ID ':' STRING
 ('owns' '{' PracticeElement* '}')?
 ('uses' '{' PracticeElementRef (',' PracticeElementRef)* '}')?
 (AddedTags)?;

Method:
 'method' ID 'based on' KernelRef ':' STRING
 'with purpose' STRING
 ('owns' '{' MethodContent* '}')?
 ('uses' '{' PracticeRef(',' PracticeRef)* '}')?
 (AddedTags)?;

9.8.1.3 Kernel Elements

An Alpha declaration and its contents are defined as:

Alpha:
 'alpha' ID ':' STRING
 (Resource(',' Resource)*)?
 'with states' '{' State+ '}'
 (AddedTags)?;

State:
 'state' ID '{' STRING ('checks {' CheckListItem+ '}')? '}' (AddedTags)?;

CheckListItem:
 'item' ID '{' STRING '}' (AddedTags)?;

In all cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is con-
sidered as content for attribute “description”.

KernelAssociation declarations resolve to two alternatives as:

AlphaAssociation:
 Cardinality AlphaRef '--' STRING '-->' Cardinality AlphaRef (AddedTags)?;

AlphaContainment:
 AlphaRef 'contains' Cardinality AlphaRef (AddedTags)?;

The STRING is considered as content for attribute “name” of this AlphaAssociation. The Cardinality maps to the attrib-
utes for lower and upper bounds in all cases. References via identifiers directly map to the respective associations of the
meta-classes as defined in the abstract syntax.

An ActivitySpace declaration is defined as:

ActivitySpace:
 'activitySpace' ID ':' STRING
 (Resource(',' Resource)*)?
 'targets' StateRef (',' StateRef)*
 ('with input' AlphaRef (',' AlphaRef)*)?
 (AddedTags)?;

The ID creates a unique identifier for this ActivitySpace, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. References via identifiers directly map to the respective associations of the meta-
classes as defined in the abstract syntax.

A Competency declaration is defined as:

Competency:
 'competency' ID ':' STRING
 (Resource (',' Resource)*)?

148 Essence, Version 1.0

 ('has' '{' CompetencyLevel* '}')?
 (AddedTags)?;

CompetencyLevel:
 'level' INT ID STRING? AddedTags?;

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. The INT maps to the attribute “level” of the CompetencyLevel element
in the abstract syntax. References via identifiers directly map to the respective associations of the meta-classes as defined
in the abstract syntax.

9.8.1.4 Practice Elements

A WorkProduct declaration and its usage in an AlphaManifest declaration are defined as:

WorkProduct:
 'workProduct' ID ':' STRING
 (Resource(',' Resource)*)?
 'with levels' '{' Level+ '}'
 (AddedTags)?;

Level:
 ('sufficient')? 'level' ID '{' STRING ('checks {' CheckListItem+ '}')? '}'
 (AddedTags)?;

WorkProductManifest:
 'describe' AlphaRef 'by' Cardinality WorkProductRef (',' Cardinality
WorkProductRef)* (AddedTags)?;

The ID creates a unique identifier for this WorkProduct, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. The Cardinality maps to the attributes for lower and upper bounds in the
WorkProductManifest. References via identifiers directly map to the respective associations of the meta-classes as
defined in the abstract syntax.

An Activity declaration and its contents are defined as:

Activity:
 'activity' ID ':' STRING
 (Resource(',' Resource)*)?
 'targets' StateOrLevelRef (',' StateOrLevelRef)*
 ('with actions' Action (',' Action)*)?
 ('requires competency level' CompetencyLevelRef(','
CompetencyLevelRef)*)?
 (AddedTags)?;

Action:
 STRING 'on' (AlphaOrWorkProductRef (',' AlphaOrWorkProductRef)*)?;
 (AddedTags)?;

The ID creates a unique identifier for this Activity, which maps to the attribute “name”. The STRING on Activity is
considered as content for attribute “description”. The STRING on Action is considered as content for attribute “kind”.
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

Essence, Version 1.0 149

An ActivityAssociation declaration is defined as:

ActivityAssociation:
 AbstractActivityRef '--' STRING '-->' AbstractActivityRef (AddedTags)?;

The STRING is considered as content for attribute “kind”. References via identifiers directly map to the respective
associations of the meta-classes (i.e. “end1” and “end2” in this order) as defined in the abstract syntax.

A Pattern declaration and its contents are defined as:

Pattern:
 'pattern' ('<' UserDefinedTypeRef '>')? ID ':' STRING
 (Resource(',' Resource)*)?
 ('{' PatternAssociation+ '}')?
 (AddedTags)?;

PatternAssociation:
 'with' PatternElementRef (',' PatternElementRef)* 'as' STRING (AddedTags)?;

The ID on Pattern creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. The STRING on PatternAssociation is considered as content for
attribute “name”. References via identifiers directly map to the respective associations of the meta-classes as defined in
the abstract syntax.

9.8.1.5 Auxiliary Elements

A user defined type declaration is defined as:

UserDefinedType:
 'type' ID ':' STRING
 (Resource(',' Resource)*)?
 ('with constraint' STRING)?
 (AddedTags)?;

The ID creates a unique identifier for this user defined type, which maps to the attribute “name”. The first STRING is
considered as content for attribute “description”. A missing clause with the second STRING is handled as above.

Tags and resources are expressed as:

Tag:
 (UserDefinedTypeRef '=')? STRING;

Resource:
 'resource' (UserDefinedTypeRef '=')? STRING;

AddedTags:
 'tagged with' '{' Tag(',' Tag)* '}';

Extension elements and merge resolutions are expressed as:

ExtensionElement:
 'on' AnyElementRef 'in' STRING 'apply' STRING (AddedTags)?;

MergeResolution:
 'on' STRING 'in' STRING 'apply' STRING (AddedTags)?;

On an ExtensionElement, the STRINGs refer to attributes “targetAttribute” and “extensionFunction” in this order. On a
MergeResolution, the STRINGs refer to attributes “targetName”, “targetAttribute” and “ResolutionFunction” in this
order.

150 Essence, Version 1.0

A Cardinality can be specified according to the following definition:

Cardinality:
 CardinalityValue ('..' CardinalityValue)?

CardinalityValue:
 INT | 'N'

An identifier used for reference is either a single token or prefixed as following:

ID ('.'ID)*

9.8.2 Examples
A complete Alpha declaration for Kernel Alpha “Requirement”:

alpha Requirements:
 "What the software system must do to address the opportunity and satisfy
the stakeholders."
 with states {
 state Conceived {"The need for a new system has been agreed."
 checks {
 item checkpoint1 {"The initial set of stakeholders agrees
that a system is to be produced."}
 item checkpoint2 {"The stakeholders that will use and
fund the new system are identified."}
 item checkpoint3 {"The stakeholders agree on the purpose
of the new system."}
 item checkpoint4 {"The expected value of the new system
has been agreed."}
 }
 }
 state Bounded {"The theme and extent of the new system is clear."
 checks {
 item checkpoint1 {"Stakeholders involved in developing
the new system are identified."}
 item checkpoint2 {"It is clear what success is for the
new system."}
 item checkpoint3 {"The stakeholders have a shared
understanding of the extent of the proposed solution."}
 item checkpoint4 {"The way the requirements will be
described is agreed upon."}
 item checkpoint5 {"The mechanisms for managing the
requirements are in place."}
 item checkpoint6 {"The prioritisation scheme is clear."}
 item checkpoint7 {"Constraints are identified and
considered."}
 item checkpoint8 {"Assumptions are clearly stated."}
 }
 }
 state Coherent {"The requirements provide a coherent description of
the essential characteristics of the new system."
 checks {
 item checkpoint1 {"The requirements are captured and
shared with the team and the stakeholders."}
 item checkpoint2 {"The origin of the requirements is
clear."}
 item checkpoint3 {"The rationale behind the requirements
is clear."}
 item checkpoint4 {"Conflicting requirements are
identified and attended to."}
 item checkpoint5 {"The requirements communicate the
essential characteristics of the system to be delivered."}
 item checkpoint6 {"The most important usage scenarios for
the system can be explained."}
 item checkpoint7 {"The priority of the requirements is

Essence, Version 1.0 151

clear."}
 item checkpoint8 {"The impact of implementing the
requirements is understood."}
 item checkpoint9 {"The team understands what has to be
delivered and agrees that they can deliver it."}
 }
 }
 state SufficientlyDescribed {"The requirements describe a system that
is acceptable to the stakeholders."
 checks {
 item checkpoint1 {"The stakeholders accept the
requirements as describing an acceptable solution."}
 item checkpoint2 {"The rate of change to the agreed
requirements is relatively low and under control."}
 item checkpoint3 {"The value provided by implementing the
requirements is clear."}
 item checkpoint4 {"The parts of the opportunity satisfied
by the requirements are clear."}
 }
 }
 state Satisfactory {"The requirements that have been addressed
partially satisfy the need in a way that is acceptable to the stakeholders."
 checks {
 item checkpoint1 {"Enough of the requirements are
addressed for the resulting system to be acceptable to the stakeholders."}
 item checkpoint2 {"The stakeholders accept the
requirements as accurately reflecting what the system does and doesn’t do."}
 item checkpoint3 {"The set of requirement items
implemented provide clear value to the stakeholders."}
 item checkpoint4 {"The system implementing the
requirements is accepted by the stakeholders as worth making operational."}
 }
 }
 state Fulfilled {"The requirements that have been addressed fully
satisfy the need for a new system."
 checks {
 item checkpoint1 {"The stakeholders accept the
requirements as accurately capturing what they require to fully satisfy the need
for a new system."}
 item checkpoint2 {"There are no outstanding requirement
items preventing the system from being accepted as fully satisfying the
requirements."}
 item checkpoint3 {"The system is accepted by the
stakeholders as fully satisfying the requirements."}
 }
 }
 }

152 Essence, Version 1.0

A minimal declaration of an Activity Space using the Alpha declared above:

activitySpace SpecifyTheSystem:
 "..."
 targets Requirements.SufficientlyDescribed

An example for a work product declaration:

workProduct DeveloperTest:
 "..."
 with levels {
 level Sketched {"..."}
 sufficient level Implemented {"..."}
 }

An example for an activity declaration:

activity ImplementSolution {
 targets Implementation.Partial, TestableSystemFeature.Tested
 with actions "read" on DeveloperTest,SEMAT_Kernel.Requirements,
 "modify" on SEMAT_Kernel.SoftwareSystem,Implementation
}

An example for a practice declaration making use of a practice asset:

practiceAsset ImplementationWork:
 "..."
 owns {
 workProduct Implementation:
 "..."
 with levels {
 level Stubs {"..."}
 level Partial {"..."}
 sufficient level Clean {"..."}
 }
 }

practice TestDrivenDevelopment:
 "..."
 with objective "..."
 owns {
 alpha TestableSystemFeature:
 "..."
 with states {
 state Planned {"..."}
 state TestImplemented {"..."}
 state SolutionImplemented {"..."}
 state Tested {"..."}
 }

 workProduct DeveloperTest:
 "..."
 with levels {
 level Sketched {"..."}
 sufficient level Implemented {"..."}
 }

 workProduct TestLog:
 "..."
 with levels {
 level Raw {"..."}
 level Analyzed {"..."}
 }

 activity ImplementDeveloperTests:

Essence, Version 1.0 153

 "..."
 targets DeveloperTest.Implemented,
TestableSystemFeature.TestImplemented
 with actions "read" on SEMAT_Kernel.Requirements

 activity RunDeveloperTests:
 "..."
 targets TestableSystemFeature.Tested
 with actions "read" on
DeveloperTest,SEMAT_Kernel.SoftwareSystem, "create" on TestLog

 activity ImplementSolution:
 "..."
 targets ImplementationWork.Implementation.Partial,
TestableSystemFeature.Tested
 with actions "read" on DeveloperTest,SEMAT_Kernel.Requirements,
"modify" on SEMAT_Kernel.SoftwareSystem,ImplementationWork.Implementation

 SEMAT_Kernel.SoftwareSystem contains 1..N TestableSystemFeature

 describe TestableSystemFeature by 1
ImplementationWork.Implementation, 1 DeveloperTest

 ImplementDeveloperTests -- "part-of" -->
SEMAT_Kernel.ImplementTheSystem
 ImplementSolution -- "part-of" --> SEMAT_Kernel.ImplementTheSystem
 RunDeveloperTests -- "part-of" --> SEMAT_Kernel.ImplementTheSystem
 }

 uses {
 ImplementationWork
 }

154 Essence, Version 1.0

Annex A: Optional Kernel Extensions
(Normative)

This annex defines the optional extensions to the Essence Kernel. It presents a number of optional extensions for use with
the Software Engineering Kernel. It begins with an introduction of the set of kernel extensions and their use. It then
continues with a description of each extension and its contents.

A.1 Introduction

A.1.1 Acknowledgements
Arne-Jørgen Berre, Shihong Huang, Andrey Bayda and Paul McMahon lead the work on the optional Kernel extension.

The following persons contributed valuable ideas and feedback that improved the Kernel extensions: Bob Corrick, Ivar
Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Winifred Menezes, Hiroshi Miyazaki, Bob Palank, Tom Rutt and
Ian Michael Spence.

A.1.2 Overview
Although the kernel can have many uses, including helping monitor the progress and health of your software engineering
endeavors, and the completeness of your software engineering methods, it can appear to be too abstract to actually drive
the software development work. This is because the kernel is designed to be used in conjunction with your selected
practices. To help you understand how the kernel works, and to provide some extensible assets to help in the creation of
your own practices, we present three optional kernel extensions, one for each area of concern. These are the following:

 Business Analysis Extension – adds two Alphas, Need and Stakeholder Representative, to drive forward the
Opportunity and the Stakeholders.

 Development Extension – adds two Alphas, Requirement Item and System Element to drive forward the
Requirements and the Software System. As well as System Element it also adds Bug to monitor the health of the
Software System. Bugs are an important thing to monitor, track and address in any software development
endeavor, and one which will inhibit, rather than drive, progress being made to the Software System.

 Task Management Extension – adds three Alphas, Team Member, Task and Practice Adoption, to drive forward
the Team, Work and Way-of-Working.

A.1.3 Why the Focus on Adding Alphas?
When using the kernel it is very unlikely that you will progress any of its Alphas as a single unit. In each case you will
drive the progress of the Alpha by progressing its parts. For example the Requirements will be progressed by progressing
the individual Requirements Items, each of which can progress at its own speed.

The way in which the Alphas progress is, of course, practice specific. For example agile practices will progress the
Requirement Items either individually or in small batches, whereas a waterfall practice will typically try to move them all
at the same time.

A.1.4 Why are the Sub-Ordinate Alphas not included in the Kernel?
When you look at the suggested set of new Alphas you may well think that they themselves are universal and question
why they haven’t been included in the kernel.

The problem when looking at software engineering at this level of detail is that the universals tend to be types of things
rather than specific things. For example although every endeavor will have Requirement Items, they won’t all have the
same type of Requirement Items. Some teams will be using user stories, others will be using use cases, and some even

Essence, Version 1.0 155

using both. Whilst it is tempting to think that one could provide a definitive definition of a Requirement Item that is
satisfactory to all communities and practices, in reality this is an impossibility and would lead to the practices becoming
distorted and overly complicated. It is better to provide a generic definition and allow the practice authors to either
extend this or ignore it as they wish.

A.1.5 How do you use the Kernel Extensions?
The kernel extensions can be used in a number of different ways:

1. To flesh out the kernel, providing a more complete picture of software engineering.

2. As templates for the creation of your own practices – for example the Requirements Item Alpha could be
extended to provide a base for the definition of your own specific types of Requirements Items.

3. As inspiration and examples. By considering the relevant extensions before defining your own practices you
will find it easier to create these and understand how they would be plugged into the kernel.

A.2 Business Analysis Extension

A.2.1 Introduction
This extension provides two additional Alphas to help teams to progress their Opportunity and Stakeholders.

A.2.2 Alphas
The business analysis extension extends the customer area of concern adding the following Alphas:

 Stakeholder Representative as a sub-ordinate of Stakeholders.

 Need as a sub-ordinate of Opportunity.

A.2.2.1 Stakeholder Representative

Description

Stakeholder Representative: A person, or group, empowered to represent a subset of the stakeholders in the endeavor.

Super-Ordinate Alpha

Stakeholders

States

Identified The need for a sub-set of the stakeholders to be represented has been
identified.

Empowered A stakeholder representative has been empowered to work with the team and
understands his or her responsibilities to the team and the people he or she
represents.

Engaged The stakeholder representative is actively involved in the work and fulfilling
his or her responsibilities.

Satisfied The stakeholder representative is satisfied with the work done and the
software system produced.

Delighted The stakeholder representative is delighted with the work done and the
software system produced.

Associations

drive : Stakeholders The progress of the Stakeholder Representatives drives the progress of the

156

Justifica

The num
The only
and refle
represent
of officia

Progres

During th
shown in
involvem
that requ
developm
of the rel
it by prov

As indica
represent
Stakehold
Stakehold

To be eff
relationsh
available
empower
done and
Stakehold

ation: Why

mber of Stakeh
y practical way
ect the opini
ting a sub-set
al body such a

ssing the St

he developme
n Figure 93,

ment and satis
uire explicit r
ment work and
lationship with
viding input a

ated in Figur
tation in the
der Represent
der Represent

fective the Sta
hip with their

e to support t
red they need
d the software
ders they repr

Stakeholde

holders in any
y to engage w
ions of the a
of the stakeho

as a focus grou

Figure 9

akeholder R

ent of a softwa
they are ide

faction of the
epresentation
d their satisfac
h the stakehol

and feedback.

e 93, the firs
project and t
tatives require
tative availabl

akeholder Rep
r sub-set of t
the team and
d to be engage
e system prod
resent.

Stakeho

r Represent

software syst
with the Stakeh
actual stakeh
olders (or all s
up or steering

93 – The sta

Representat

are system the
entified, empo
e stakeholder

through the
ction and delig
lders who are

t thing to do
to determine
ed can vary co
le to the team.

presentatives m
he Stakeholde
understand th

ed with the te
duced. It is ke

olders.

tative

tem is often un
holders is to a

holders. The
stakeholders a
committee.

ates of the S

tives

e stakeholder
owered, enga
representative
empowermen
ght in the resu
either directly

is to identify
the number

onsiderably fr
.

must be empo
ders. Of partic
the particular
eam and to wo
ey part of the

nbounded, wit
appoint one o
Stakeholder R

as is the case w

Stakeholder

representativ
aged, satisfied
es, from the i
nt of stakehol
ulting softwar
y involved in

y which sub-s
of Stakeholde
rom one syste

owered both in
cular importan

needs of the
ork with the t
ir responsibil

th many syste
r more Stakeh
Representativ
with the Scrum

r Representa

es progress th
d and delight
dentification
lder represent
re system. The
the software e

sets of the St
er Representa

em to another,

n their relation
nce is to mak
 stakeholders
team so that t
ities to accura

 Es

ems affecting
holder Repres

ve may be a
m Product Ow

ative

hrough severa
ted. These st
of a sub-set o

tatives, their e
ey communic
engineering e

takeholders th
atives require
, but there is a

onship with th
ke sure that t
s they represe
they are satis
ately reflect t

ssence, Versio

millions of pe
sentatives to g

single indiv
wner), or some

al state change
tates focus on
of the stakeho
engagement i
ate the progre
ndeavor or su

hat require ex
d. The numb
always at leas

e team and in
they have the
ent. Once the
fied with the
the opinions o

on 1.0

eople.
gather
vidual
e kind

es. As
n the
olders
in the
ession
upport

xplicit
ber of
st one

n their
 time

ey are
work

of the

Essence, Version 1.0 157

Checking the progress of a Stakeholder Representative

To help assess the state and progress of a Stakeholder Representative, the following checklists are provided:

Table 34 – Checklist for Stakeholder Representative

State Checklist

Identified A person to act on behalf of the stakeholders has been identified from the stakeholder
group.

 The responsibilities of the stakeholder representative have been identified.

Empowered The stakeholder representative has domain knowledge.

 The stakeholder representative has been authorized in decision making.

 The stakeholder representative knows his /her responsibilities.

Engaged The stakeholder representative actively supports the team.

 The stakeholder representative participates in decision making of the product.

 The stakeholder representative provides feedback about the product.

Satisfied The minimum expectation of the stakeholders has been achieved.

Delighted The system meets or exceeds the minimum expectation of the stakeholders.

How the Stakeholder Representatives drive the progress of the Stakeholders

The progress of the Stakeholders is driven by the Stakeholder Representatives. For illustrative purposes the states of the
two Alphas are shown in Figure 94.

Figure 94 – The Stakeholder Representatives drive the progress of the Stakeholders

How the Stakeholder Representatives drive the progress of the Stakeholders is summarized in Table 35, along with the
additional checklist items that this kernel extension adds to the Stakeholders’ state checklists.

Identified

Empowered

S
ta

ke
h

ol
de

r
R

ep
re

se
n

ta
tiv

e

Delighted

Engaged

Satisfied

Recognized

Represented

S
ta

ke
h

ol
de

rs

Satisfied for
Deployment

Involved

Satisfied in
Use

In
Agreement

Drives

158 Essence, Version 1.0

Table 35 – How the Stakeholder Representatives drive the Stakeholders

Stakeholders
State

How the Stakeholder Representatives drive
the progress of the Stakeholders

Additional Checklist Items

Recognized First the Stakeholders must be recognized. An
important part of this is to identify how they
will be represented.

The proposed set of Stakeholder Representatives
has been Identified.

Represented Continuing to progress the Stakeholder Rep-
resentatives will help to continue the progress
of the Stakeholders.

To ensure that the Stakeholders are represent-
ed it is important to make sure that all the
identified Stakeholder groups have empow-
ered Stakeholder Representatives.

All the recognized groups of Stakeholders have at
least one empowered Stakeholder Representative.

Involved To involve the Stakeholders their Stakeholder
Representatives will have to be engaged.

All the recognized groups of Stakeholders have at
least one engaged Stakeholder Representative.

In Agreement Actively engaging the Stakeholder Represent-
atives will facilitate bringing them to agree-
ment about the Opportunity to be addressed
and the Requirements for the Software Sys-
tem.

Enough of the Stakeholder Representatives are
engaged in the decision making for agreement to
be reached.

Satisfied for De-
ployment

The best indication of whether the Stakehold-
ers are satisfied is the level of satisfaction of
the individual Stakeholder Representatives.
By satisfying the Stakeholder Representatives
you can progress the Stakeholders to satisfied
for deployment.

Note: you may want to engage with more
Stakeholder Representatives to verify that the
Software System produced for the initial set
of Stakeholder Representatives is generally
applicable.

All the Stakeholder Representatives are satisfied
or delighted with the Software System that has
been produced.

Satisfied In Use The best indication of whether the Stakehold-
ers are satisfied is the level of satisfaction of
the individual Stakeholder Representatives.
By ensuring the continued satisfaction of the
Stakeholder Representatives you can progress
the Stakeholders to satisfied in use.

Again you may want to engage with more
Stakeholder Representatives to verify that the
Software System produced for the initial set
of Stakeholder Representatives is actually
useful.

All the Stakeholder Representatives are satisfied
or delighted with the Software System that is
operational.

The state of the individual Stakeholder Representatives is independent of the overall state of the Stakeholders. For
example an individual Stakeholder Representative may be engaged before the Stakeholders as a whole are represented.

Note that it is possible that a team may only have one Stakeholder Representative who represents all of the Stakeholders.

Essence,

In this ca

A.2.2.2

Descrip

Need: A

Need exi
be value

Super-O

Opportu

States

Identified
Value Es

Satisfied

Expectat

Associa

drive : O

Justifica

Different
solution.
and delig
Opportun

The Nee
solution/s

, Version 1.0

ase it is still us

2 Need

ption

lack of somet

ists within the
generated by

Ordinate Alp

unity

d
stablished

d

tion Exceeded

ations

Opportunity

ation: Why

t groups of S
Explicitly tra
ght the Stake
nity.

ed is necessar
system that m

seful to track t

thing necessar

 customer, an
addressing th

pha

d

Need

Stakeholders w
acking the indi
eholders. Pro

ry for having
meets the Need

the state of the

ry, desirable or

d will be cons
e Need, and p

A need
The valu
that add
The min
met.
The min
exceede

The pro

will respond
ividual Needs

ogressing the

Figure 9

g a well defi
ds of the Stake

e Stakeholder

r useful, requi

sidered by pro
pursuing the id

related to the
ue to the custo

dresses the nee
nimal expecta

nimal expecta
ed to the exten

ogress of the N

to the Oppor
s is necessary

individual N

95 – The sta

fined Opportu
eholders.

r Representativ

iring supply o

oduct or portfo
dentified oppo

opportunity a
omers and oth
ed is establish

ations for a sol

ations for a sol
nt that the stak

Needs drive th

rtunity in dif
if you want to

Needs is the

ates of the N

unity, as the

ve as well as t

or relief.

olio managers
ortunities.

and the stakeho
her stakeholde
hed.
lution that add

lution that add
keholders are d

he progress of

fferent ways a
o truly underst

best way to

Need

Opportunity

the Stakehold

s who analyze

holders is iden
ers of a succes

dresses the ne

dresses the ne
delighted.

f the Opportun

and have dif
tand the value

o ensure that

is the possib

ers.

 whether there

tified.
ssful solution

ed have been

ed have been

nity.

fferent needs
e of an Opport

you progres

bility to prov

 159

e will

for a
tunity
ss the

vide a

160 Essence, Version 1.0

Progressing the Need

If the Team does not take the time to understand the Needs that drive the Opportunity they are likely to identify the
wrong Requirements and develop the wrong Software System. The Needs need to be understood and individually
addressed. As shown in Figure 95 Needs progress through the identified, value established, satisfied and expectations
exceeded states. These states focus on understanding the value of addressing the need and the benefit that can be expected
from the delivery of an appropriate Software System.

The need is the inherent lack of something necessary, desirable or useful, requiring supply or relief. As indicated in
Figure 95, a Need initially is identified and described in a suitable form. One form it can take is in describing potential
features of a new or existing system. Alternatively it can be described in terms of desired outcomes or benefits to be
achieved. Once the Need has been identified the next step is to quantify the benefit that could be generated if the Need is
addressed. As a next step, the Need’s value gets established, the value to the customers, and other stakeholders. Here, the
solution that addresses the Need is quantified and the need has been prioritized.

Finally, when a Software System is available and it fulfills the minimum expectations the Need can progress to the
satisfied state. To truly delight the Stakeholders the Software System must surpass the minimal expectation in some way.
If this happens then the Need is progressed to the expectations exceeded state.

Checking the progress of Need

To help assess the state and progress of Need, the following checklists are provided:

Table 36 – Checklist for Need

State Checklist

Identified A lack of something necessary, desirable or useful to the Stakeholders and related to the
Opportunity has been identified.

 The Need has been clearly described.

 It is clear which Stakeholder groups share the Need.

Value Established The value of addressing the Need has been quantified.

 The relative priority of the Need is clear.

 The minimum expectations of the affected Stakeholders are clear.

Satisfied A usable software system that addressed the Need is available.

 The minimum expectations of the affected stakeholders have been satisfied.

Expectation
Exceeded

 The minimum expectations of the affected stakeholders have been exceeded.

How the Need drives the progress of the Opportunity

The need will drive the opportunity by providing the targets for the opportunity to achieve. From a provider point of view
the opportunity is the possibility to create a solution that meets the needs of the Stakeholders. The need also provides the
foundation for the formulation of the Requirements.

The progress of the Opportunity is driven by the Needs. For illustrative purposes the states of the two Alphas are shown
in Figure 96.

Essence,

How the
that this k

Opportu

Identified

Solution

Value Es

Viable

Addresse

, Version 1.0

Needs drive t
kernel extensi

unity State

d

Needed

stablished

ed

Figure 96

the progress o
ion adds to the

Tab

How the Nee
Opportunity

First an Opp
hough the Op
ing if some
been identifie
pendent of th
Needs.

To demonstra
ysis if the O
drive it is re
are identified
solution.

To understan
one must und
that drive it.

Progressing t
will help to p
Established.

Once the valu
and its underl
additional wo
and establish
further progre
stage.

Continuing to
progress the O

The Opportu

6 – The Need

f the Opportu
e Opportunity

ble 37 – How

eds drive the
y

ortunity must
pportunity wil
of the Needs
ed progress to

he state of any

ate that a solu
Opportunity a
equired. If no
d then there is

nd the value
derstand the v

the Needs to
progress the O

ue of addressi
lying Needs h
ork is needed

if the Opport
ess on the Nee

o progress the
Opportunity to

unity has not

ds drive the

unity is summa
y’s state check

w the Needs

progress of t

t be identified
ll be more co
s that drive it
o this state is

y of the sub-or

ution is needed
and the Need
o compelling

no real need f

of the Oppor
value of the

 Value Estab
Opportunity to

ing the Oppor
has been estab
to cost the so

rtunity is viab
eds is needed

e Needs will h
o Addressed.

been proper

e progress o

arized in Table
klists.

s drive the O

he Add

d. Alt-
nvinc-
t have
s inde-
rdinate

Non

d anal-
ds that
Needs
for the

At le

rtunity
Needs

blished
Value

All o
estab

rtunity
blished
olution
le. No
at this

Non

help to

rly ad-

All o

of the Oppor

e 37, along wi

Opportunity

ditional Check

e.

east one comp

of the Needs
blished.

e

of the critical N

rtunity

ith the additio

y

klist Items

pelling Need h

have been p

Needs have b

onal checklist

has been ident

rogressed to

een satisfied.

 161

items

tified.

value

162 Essence, Version 1.0

dressed in there are critical Needs that have
not been satisfied.

Benefit Accrued It will be difficult for benefit to be accrued
from the use of the Software System if it has
not satisfied the critical Needs.

It is confirmed by the users that the critical Needs
have been satisfied or expectations are exceeded.

Some practices, like goal oriented requirements engineering practices, will introduce the concept of goal as a link from
needs and opportunities to system requirements. In such cases a new sub-ordinate alpha of requirements can be
introduced for this.

A.3 Development Extensions

A.3.1 Introduction
The Development Extension provides three additional Alphas to help teams to progress the Requirements and Software
System alphas.

A.3.2 Alphas
The development extension expands the solution area of concern adding the following Alphas:

 Requirement Item as a sub-ordinate of Requirements.

 Bug as a sub-ordinate of Software System.

 System Element as a sub-ordinate of Software System.

A.3.2.1 Requirement Item

Description

Requirement Item: a condition or capability needed by a stakeholder to solve a problem or achieve an objective.

Requirements are composed of Requirement Items. These are the individual requirements, which can be addressed and
progressed individually. The overall progress and health of the Requirements alpha is driven by the progress and health
of its Requirement Items. The number of Requirement Items can vary in a wide range from one system to another.

Super-Ordinate Alpha

Requirements

States

Identified A specific condition or capability that the Software System must address has
been identified.

Described The Requirement Item is ready to be implemented.
Implemented The Requirement Item is implemented in the Software System and

demonstrated to work.
Verified Successful implementation of the Requirement Item in the Software System

has been confirmed.

Essence, Version 1.0 163

Figure 97 – The states of Requirement Item

Associations

drive : Requirements The progress of the Requirement Items drives the progress of the
Requirements.

Justification: Why Requirement Item

The Software System is usually developed to fulfill a number (a potentially very high number) of Requirements. The
only efficient way to manage them is to manage them individually (e.g. as Requirement Items) whilst being aware of
their progress as a whole. Managing requirements at the Requirement Item level allows teams to ensure that the
Requirements are appropriately crafted (i.e. they are necessary, implementation independent, clear and concise, complete,
consistent, achievable, traceable and verifiable). It also helps when mapping them to the code and tests, and when using
any form of requirements management tool.

Progressing the Requirement Items

During the development of a software system the requirement items progress through several state changes. As shown in
Figure 97, they are identified, described, implemented and verified. These states focus on the progress and health of the
individual Requirement Items, from their identification and description as part of the requirements elicitation to their
implementation and verification by the development team. Understanding the state of the Requirement Items helps in
planning, tracking and driving the development of the required Software System.

The individual Requirement Items are first identified. This may be as the result of a requirements workshop, receiving a
change request, or even derived from another higher-level Requirement Item. In the first state of the Requirement Item,
the identified state, a specific condition or capability that the Software System must address has been identified. Its
objectives have been briefly defined and its management mechanism is selected. Work is then needed to flesh out the
Requirement Item and ensure that it is well formed and suitably described.

In the described state, the description of the Requirement Item evolves into a clear, concise, complete, consistent and
verifiable description. The Requirement Item is also justified as necessary and achievable, and prioritized relative to its
peers. Next, the Requirement Item is implemented as part of the Software System. Finally the last few activities and
pieces of testing are completed to confirm that the Requirement Item is truly done. In the verified state, it has been
confirmed that the Software System successfully implements the Requirement Item.

164 Essence, Version 1.0

Checking the progress of a Requirement Item

To help assess the state and progress of a Requirement Item, the following checklists are provided:

Table 38 – Checklist for Requirement Item

State Checklist

Identified Requirement Item is briefly described.

 The Requirement Item is logged.

 The origin of the Requirement Item is clear.

 The value of implementing the Requirement Item is clear.

Described The Requirement Item is justified as necessary and achievable.

 The Requirement Item specification technique is selected.

 The Requirement Item is described clearly, concisely, and consistently.

 The Requirement Item is described in a verifiable way, and is possible to test.

 The Requirement Item is prioritized relative to its peers.

 The Requirement Item does not specify a design or solution.

 The Requirement Item is ready for development.

 The impact of implementing the Requirement Item is understood.

Implemented The System Elements involved in the implementation of the Requirement Item are known.

 The development and developer testing of the code that implements the Requirement Item
is complete.

 A version of the Software System implementing the Requirement Item is available for
further demonstration and testing.

Verified Tests showing that the Requirement Item has been implemented to an acceptable level of
quality have been successfully executed.

 Verification report is stored and available for future reference.

Essence,

How the

The prog
the two A

How the
checklist

Requirem
State

Conceive

Bounded

Coherent

, Version 1.0

Figur

e Requireme

gress of the R
Alphas are sho

Requirement
t items that thi

ments

ed

d

t

re 98 – The R

ent Items dr

Requirements i
own in Figure

Items drive th
is kernel exten

Table 39 –

How the Req
progress of t

Progress to th
of the state
quirement Ite

To properly b
the most imp
be identified

Continuing to
will help to c
quirements.

Describing th
municate the
system will h
coherent.

Requiremen

rive the prog

is driven by th
98.

he progress of
nsion adds to t

– How the Re

quirement Ite
he Requirem

he conceived
of any of th

ems.

bound the Req
ortant Requir
and described

o progress the
continue the p

he Requireme
e essential ch
help the Requi

nt Items driv

gress of the

he associated

f the Requirem
the Requirem

equirement

ems drive the
ments

state is indepe
he sub-ordinat

quirements so
rement Items s
d.

e Requirement
progress of th

ent Items that
haracteristics
irements to be

ve the progr

e Requireme

Requirement

ments is summ
ents state chec

Items drive

e Add

endent
te Re-

Non

ome of
should

One
been

t Items
he Re-

t com-
of the
ecome

New

ress of the R

ents

t Items. For il

marized in Tab
cklists.

 the Require

ditional Check

e

or more ess
n identified and

w complete che

The Require
fied and sh
stakeholders

The Require
the essentia
have been d

Conflicting
identified an

The describ
municate the
system to be

Requiremen

llustrative pur

ble 39, along

rements

klist Items

sential Requir
nd described.

ecklist:

rement Items
hared with t
s.

rement Items
al characterist
described.

Requirement
nd attended to

bed Requirem
he essential ch
e delivered.

nts

rposes the stat

with the addit

rement Items

have been id
the team and

that commun
tics of the sy

t Items have
o.

ment Items
haracteristics o

 165

tes of

tional

have

denti-
d the

nicate
ystem

been

com-
of the

166 Essence, Version 1.0

 The most important usage scenarios for the
system can be explained.

 The team understands what has to be deliv-
ered and agrees to deliver it.

Acceptable Describing the highest priority Requirement
Items will help evolve the Requirements to
the point where they define a system accepta-
ble to the stakeholders.

Note: For mature systems this may only re-
quire the definition of a single Requirement
Item – what makes the Requirements ac-
ceptable is up to the Stakeholders.

New complete checklist:

 Enough Requirement Items are described
to define a system acceptable to the stake-
holders.

 The rate of change to the agreed Require-
ment Items is relatively low and under con-
trol.

 The Needs satisfied by the Requirement
Items are clear.

Addressed Implementing and verifying the Requirement
Items is the only way to address the
Requirements.

The	Requirements	are	addressed	when	the	
set	of	Requirement	Items	implemented	and	
verified provide clear value to the stakehold-
ers and the resulting system is worth releas-
ing.

New complete checklist:

 Enough of the Requirement Items have
been Implemented and Verified for the re-
sulting system to be acceptable to the
stakeholders.

 The stakeholders accept the Requirement
Items as accurately reflecting what the sys-
tem does and does not do.

 The set of Requirement Items implemented
and verified provide clear value to the
stakeholders.

 The system implementing the Requirement
Items is accepted be the stakeholders as
worth making operational.

Fulfilled You continue implementing and verifying
additional requirement items until the result-
ing system fully satisfies the need for a new
system, and there are no outstanding Re-
quirement Items preventing the system from
being considered complete.

Requirements checklist item “There are no out-
standing requirement items preventing the system
from being accepted as fully satisfying the re-
quirements” is replaced with the following item:
“All Requirement Items preventing the system
from being accepted as fully satisfying the re-
quirements have been verified.”

The state of the individual Requirement Items is independent of the states of their owning Requirements. It is quite
possible for one or more Requirement Items to be verified before the Requirements are bounded or coherent. For
example you could implement and verify some of the most obvious, important and risky requirement items before
investing the time and effort in working with the Stakeholders to make the Requirements bounded or coherent.

A.3.2.2 Bug

Description

Bug: An error, flaw, or fault in a Software System that causes the system to fail to perform as required.

Essence,

Super-O

Software

States

Detected
Located
Fixed
Closed

Associa

inhibit : S

Justifica

Bugs are
operation
Understa
engineeri

Essence u
open to m

Progres

Bugs thre
any dama
focus on
threatenin

The Bug
Bug is de
the bug c
version o
Software

, Version 1.0

Ordinate Alp

e System

d

ations

Software Syst

ation: Why

e inevitable p
nal. The overa
anding and m
ing endeavor.

uses the term
misinterpretati

ssing the Bu

eaten the succ
age. As show
the managem

ng the health

 first has to b
etected it is re
cannot be iden
of the Softwar
e System, the B

pha

tem

Bug

part of softwa
all state of th

monitoring the

Bug as it is o
ion than the ot

ugs

cess of any so
wn in Figure 9
ment of the Bu

of, the Softwa

be detected. T
ported and log
ntified then it
re System can
Bug is closed.

An erro
The cau
The Bug
The rem

The Bu

are developme
he Software S
e progress an

one of the mos
ther alternativ

Figure

oftware engine
99, Bugs prog
ugs and provid
are System.

This may be as
gged. Then th
will be impos

n be made ava
.

or, fault or flaw
use of the Bug
g has been rem

moval of the B

ugs inhibit the

ent. The trick
ystem is affe

nd health of

st common wo
ves such as pro

e 99 – The s

eering endeav
gress through
de clear under

s the result of
he Bug must b
ssible to fix. O
ailable. Finally

w in the Softw
g in the Softwa
moved from th

Bug from the S

progress of th

k is to elimin
cted by the q
any Bugs de

ords in the sof
oblem and def

states of a B

vor. They hav
the detected,
rstanding of w

f testing, revi
e investigated
Once the Bug
y, after the Te

ware System is
are System ha
he Software S
Software Syste

he Software Sy

nate them all
quantity and s
etected is an

ftware industr
fect.

Bug

e to be found
located, fixed

whether they a

ewing or usin
d and its cause

is located it c
eam has confi

s observed and
as been found.
System.
em has been c

ystem.

before the S
severity of the

essential par

ry, and is mor

d and resolved
d and closed s
are inhibiting

ng the Softwa
e must be loca
can be fixed a
irmed its abse

d logged.
.

confirmed.

oftware Syste
e Bugs it con
rt of any soft

re intuitive and

d before they
states. These
the progress

are System. O
ated. If the cau
and a new bug
ence in the up

 167

em is
ntains.
ftware

d less

cause
states
of, or

nce a
use of
g-free
dated

168

Checkin

To help a

State

Detecte

Located

Fixed

Closed

How the

The prog
Alphas ar

ng the progr

assess the state

ed

d

F

e Bugs inhib

gress of the So
re shown in F

ress of a Bu

e and progress

Checklist

 Bug ha

 Details

 The sev

 The Bu

 The Sy

 The co

 The Bu

 The wo

 A new

 The ab

 Tests, r
has bee

 The Bu

Figure 100 –

bit the progr

oftware Syste
Figure 100.

ug

s of a Bug, the

Tabl

t

as been reporte

s about the Bu

verity of the B

ug has been in

ystem Element

st of fixing an

ug is ready to b

ork required to

Bug-free vers

sence of the B

reviews or oth
en corrected o

ug managemen

– The Bugs i

ress of the S

m is inhibited

e following ch

le 40 – Chec

ed and given a

ug, and the situ

Bug has been a

nvestigated an

ts causing the

nd testing the B

be fixed.

o correct the o

sion of the Sof

Bug has been v

her appropriat
or shown not to

nt has been fin

inhibit the p

Software Sy

d by the Bugs

hecklists are p

cklist for Bu

a unique ident

uation within w

assessed.

d its impact a

Bug have bee

Bug has been

offending Syst

ftware System

verified.

te activities ha
o actually be a

nalized.

progress of

ystem

s found in it. F

provided:

g

tifier.

which it occur

ssessed.

en identified.

estimated.

tem Elements

m is available.

ave been unde
an error, fault

the Softwar

For illustrativ

 Es

urred, have bee

 has been com

ertaken to ens
or flaw.

re System

ve purposes th

ssence, Versio

en reported.

mpleted.

sure that the B

he states of the

on 1.0

Bug

e two

Essence, Version 1.0 169

How the Bugs inhibit the progress of the Software System is summarized in Table 41, along with the additional checklist
items that this kernel extension adds to the Software System state checklists.

Table 41 – How the Bugs inhibit the Software System

Software System
State

How the Bugs drive the progress of the
Software System

Additional Checklist Items

Architecture Selected Progress to this state is independent of the
state of any of Bugs in the Software Sys-
tem.

None

Demonstrable When the Software System is in demon-
strable state some bugs may be detected
and located.

The Bugs detected and/or located did not prevent
the Software System from being successfully
demonstrated.

Usable Detecting and fixing Bugs will help to
continue the progress of the Software
System.

Fixing any Bugs in the core functionality
of the Software System is essential for it
to become usable.

All critical Bugs have been fixed.

Ready Detecting and fixing Bugs will help
evolve the Software System to the point
where it is ready for deployment in a live
environment.

The number and severity of the Bugs yet to be
Fixed and Closed are low enough so that the
system can be deployed.

Operational Fixing any Bugs detected during live use
of the Software System is an important
part of keeping it operational.

The remaining Bugs, if any, do not require im-
mediate fixing.

Retired The system is no longer being supported None

The state of the individual Bugs are independent of the states of their owning Software System. It is quite possible for
one or more Bugs to be Detected or Located after the Software System is Ready or Operational. For example using the
system which contains some non-critical Bugs may be beneficial enough for deploying and using it before these Bugs are
closed.

A.3.2.3 System Element

Description

System Element: Independently developable and testable part of a system.

System Elements are the independent but interrelated parts that together comprise a Software System. Hence, the
Software System’s progress and health are driven by the progress and health of its System Elements.

Super-Ordinate Alpha

Software System

States

Identified A system element has been identified as part of the Software System and its
responsibilities and its position in the Software System are clear.

170 Essence, Version 1.0

Interfaces Agreed The System Elements interfaces have been agreed.
Developed The System Element has been implemented and tested, and is believed to be

ready for integration into the Software System.
Ready The System Element has been verified and is ready for live use as part of the

Software System.

Associations

drive : Software System The progress of the System Elements drives the progress of the Software
System.

Justification: Why System Element

A Software System is made up of software, hardware, and data. Each part of the Software System can be software or
hardware or data or any combination of the three. A Software System usually consists of several parts or System

Figure 101 – The states of System Element

Elements in Essence terms. Essence recognizes universal states that all system elements progress through during the
development of a Software System.

Progressing the System Elements

A Software System is not usually developed as a single solid block. It is built from a numbers of System Elements, each
of which may be specially built or acquired from elsewhere. During their development System Elements progress
through several state changes. As shown in Figure 101, they are identified, interfaces defined, developed and ready.
These states focus on providing clear understanding of System Element states.

As indicated in Figure 101, the first thing to do is to identify System Elements needed and assign them their
responsibilities within the overall Software System. Once the System Element is identified its expected behavior and
position in the Software System is known and the decision can be made about how to source it. The next step is to refine
the System Element’s responsibilities and make sure its interfaces are agreed. When the System Element interfaces are
agreed its relationship with the other System Elements, and where necessary other systems, are defined. The Team can
now complete the implementation and testing of the System Element progressing it to the developed state. Finally, after
all the required testing is done, the System Element is ready for live use as part of the Software System.

Essence, Version 1.0 171

Checking the progress of a System Element

To help assess the state and progress of a System Element, the following checklists are provided:

Table 42 – Checklist for System Element

State Checklist

Identified The need for the System Element is recognized.

 The System Element’s expected behavior and responsibilities in the Software System are
clear.

 Any additional Software Systems that need this System Element are identified.

 The options about whether to buy or build the System Element have been explored.

 Any requirements and constraints on the System Element are known, such as performance
requirements or memory utilization constraints.

Interfaces Agreed Interfaces of the System Element with the other system elements are defined.

 Required interfaces of the System Element with other systems are defined.

 Buy or build decisions have been made.

 It has been specified how other System Elements should interact with the System
Element.

 All externally detectable outcomes are specified including data that is returned and events
that may be raised.

Developed The System Element has been implemented in a way that is conformant with its interfaces.

 The System Element implements the operations on its provided interfaces.

 The System Element has been verified as conformant with its interfaces by passing all its
unit tests.

 The System Element is available for integration into the Software System.

Ready All the required testing on the System Element is complete.

 The System Element can interoperate with the other System Elements in the System.

 The System Element can interoperate with any external systems it communicates with.

 System Element is available for use in the live environment.

172 Essence, Version 1.0

Figure 102 – The System Elements drive the progress of the Software System

How the System Elements drive the progress of the Software System

The progress of the Software System is driven by the system elements composing it. For illustrative purposes the states
of the two Alphas are shown in Figure 102.

How the System Elements drive the progress of the Software System is summarized in Table 43, along with the
additional checklist items that this kernel extension adds to the Software System state checklists.

Table 43 – How the System Elements drive the Software System

Software System
State

How the System Elements drive the
progress of the Software System

Additional Checklist Items

Architecture Se-
lected

To progress the Software System to the archi-
tecture selected state the System Elements
that make up the Software System should be
identified and have their Responsibilities
Assigned.

The core System Elements should also have
their interfaces agreed.

The core System Elements are all in the interfac-
es agreed state.

Demonstrable The core System Elements need to be ac-
quired or developed to be able to assemble a
demonstrable Software System.

The core System Elements are all developed and
included in the Software System

Usable Making ready the System Elements that im-
plement the essential characteristics of the
system will help the whole system to become
usable.

The System Elements that implement the essen-
tial characteristics of the system have been made
ready.

Essence, Version 1.0 173

Ready Continuing to progress the System Elements
will help to continue the progress of the Soft-
ware System.

For the Software System to be ready all of its
parts must also be ready.

All of the System Elements that make up the
system are ready.

Operational All the System Elements should remain ready
to make, and keep, the Software System oper-
ational.

All of the System Elements that make up the
system are Ready.

Retired Progress to the retired state is independent of
the state of any of the sub-ordinate System
Elements.

None

The state of the individual System Elements is independent of the state of their owning Software System. It is quite
possible for the System Elements to change states between interfaces defined and developed in both forward and
backward directions to reflect the need for their further development and maturation. When System Element reaches
ready state its correct interoperability with other System Elements and Systems is confirmed. In many cases once a
System Element achieves the ready state any additional changes are only allowed if the state is maintained.

A.4 Task Management Extension

A.4.1 Introduction
The Task management extension provides three additional Alphas to allow teams to progress their Team, Work and Way
of Working.

A.4.2 Alphas
The task management extension enhances the endeavor area of concern adding the following Alphas:

 Team Member as a sub-ordinate of Team

 Task as a sub-ordinate of Work

 Practice Adoption as a sub-ordinate of Way of Working

A.4.2.1 Team Member

Description

Team Member: An individual acting as part of a team.

The Team Members are a group of people that comprise a team.

Super Ordinate Alpha

Team

States

Wanted A team member with specific skills is sought to join the team.
On Board The team member is on board and learning how to contribute to the team.
Contributing The team member is helping her teammates and driving the team's

performance
Exiting The team member is preparing to leave the team.

174

Associa

drive : Te

Justifica

Team Me
have at le

Progres

Team M
contribut

First it m
identified

to be bro
learn how
contribut
team's pe

When a t
transition

Checkin

To help a

State

Wanted

On Boa

ations

eam

ation: Why T

embers are ne
east two Team

ssing the Te

Members prog
ting, and exitin

must be decide
d and steps are

ought on board
w to fulfill her
ting member
erformance.

team member
ned out of the

ng the progr

assess the state

d

ard

Team Memb

eded to form a
m Members.

eam Member

gress through
ng. These stat

ed that a new t
e being taken

d. This means
r responsibilit
of the team i

decides to lea
team.

ress of a Te

e and progress

Checklist

 The req

 An ind

 Team m

The pro

ber

a Team. A Tea

rs

a number o
tes focus on ho

team member
to find a new

Figure 103

s that the Team
ies and overco
implying that

ave the team,

am Member

s of a Team M

Table 44 –

t

quired compet

ividual with r

member has be

ogress of the T

am may range

of states. As
ow well the T

r is wanted. In
Team Membe

3 – The state

m Member ha
ome any chall
t she is active

or is no longe

r

Member, the fo

– Checklist

tencies and sk

required comp

een inducted i

Team Member

e from two to m

indicated in
Team Member

n this state the
er. Once a new

es of Team M

as been selecte
lenges present
ely fulfilling

er needed by th

ollowing check

for Team m

kills for a role

petencies and s

into the team.

rs drives the p

many Team M

n Figure 103
s are integrate

e competencie
w team memb

Member

ed and inducte
ted by the new
her responsib

he team, she i

klists are prov

ember

have been ide

skills is being

 Es

progress of the

Members. This

, these are w
ed into the tea

es and skills th
ber has been fo

ed into the tea
w role. Over t
bilities and he

is considered

vided:

entified.

g sought.

ssence, Versio

e Team.

s means that T

wanted, on-b
m.

hat are require
ound she need

am, and is rea
time she becom
elping to driv

to be exiting a

on 1.0

Teams

board,

ed are
ds

ady to
mes a

ve the

and is

Essence,

Contrib

Exiting

How the

The prog
Alphas ar

How the
to additio

, Version 1.0

buting

g

e Team Mem

gress of the T
re shown in F

Team Membe
onal checklist

 Team m

 The ga
require

 The Te

 The Te

 The Te

 The Te

Figure 104

mbers drive

Team is drive
Figure 104.

er Alpha drive
items that thi

member is lear

ap, if any, bet
ed by their new

am member is

am member a

am member’s

am member h

– The Team

the progres

n by the asso

es the progress
s kernel exten

rning how to c

tween the Tea
w role are kno

s collaborating

actively contri

s participation

has completed

m Members d

ss of the Tea

ociated Team

s of the Team
nsion adds to t

contribute to t

am member’s
own.

g effectively w

butes to the w

n on the team i

d or is handing

drive the pr

am

Members. Fo

m Alpha is sum
the Team state

the work and p

s actual skills

with teammate

well-being of th

is coming to a

g over her resp

ogress of th

or illustrative

mmarized in Ta
e checklists.

participate on

s and compete

es.

the team.

an end.

ponsibilities to

he Team

e purposes the

able 45, along

n the team.

encies and th

o someone els

e states of the

g with the refe

 175

ose

e.

e two

erence

176 Essence, Version 1.0

Table 45 – How the Team Members drive the Team

Team State How the Team Members drive the progress
of the Team

Additional Checklist Items

Seeded	 One	 or	more	 of	 the	 expected	 Team	Mem‐
bers	are	needed	to	seed	the	Team.	

One	or	more	key	Team	Members	are	on	board.	

One	 or	 more	 additional	 Team	 Members	 are	
wanted.	

Formed	 The remaining Team Members are recruited
to form the team.	

All	 required	 team	 members	 are	 on	 board.
	

Collaborating	 As the Team members start to work together
they drive the team to the collaborating state.	

The	majority	of	the	team	members	are	actively	
contributing	to	the	success	of	the	team.		

Performing	 As the Team Members start to work well
together and continuously improve their team
working they drive the team to the performing
state.	

All	 team	members	are	actively	contributing	 to	
the	success	of	the	team.		

Adjourned	 Finally, when the team is no longer needed it
is adjourned.

All	team	members	have	exited	the	team.	

The state of the individual Team Members is independent of the states of their owning Team. It is quite possible for one
or more Team Members to be contributing before the Team is collaborating or performing. For example you might have
some Team Members that are on-board but are still being brought up to speed, while others are fully contributing.

A.4.2.2 Task

Description

Task: A portion of work that can be clearly identified, isolated, and then accepted by one or more team members for
completion.

Super Ordinate Alpha

Work

States

Identified The task has been identified and is ready to be done.
In Progress The task has been accepted by one or more team members and work has

started.
Done The work required to do the task has been completed.

Associations

drive : Work The progress of the Tasks drives the progress of the Work.

Justification: Why Task

Tasks are the fundamental unit of work that team members use to identify and track their work progress.

Progressing the Tasks

Tasks pass through a number of states. As indicated in Figure 105, these are identified, in progress, and done. These

Essence,

states foc

Tasks are
isolated f
several t
developm
granulari

Once wo
actively w
because i

Checkin

To help a

State

Identifi

In Prog

Done

, Version 1.0

cus on the man

e first identifie
from the work
eam member

ment of multi
ity of a task is

ork starts on a
working on it
it has been det

ng the progr

assess the state

ied

gress

nagement of t

ed by looking
k, small enou
s. A single ta
iple work pro
 proportional

a Task it prog
t. Finally a ta
termined to be

ress of a Tas

e and progress

Checklist

 A porti

 The obj

 The act

 It is cle

 The co

 The eff

 A team

 The pro

 A targe

 The am

 The tas

the Task. Track

g at the Work t
ugh to be estim
ask may conc
oducts, or mu
to the trust yo

gresses to the
ask is done wh
e completed a

Figure 1

sk

s of a Task, th

Table

t

ion of work ha

jective of the

tivities that ne

ear whether th

mpletion crite

fort required to

m member has

ogress of the t

et completion

mount of effort

sk is determin

king the progr

that needs to b
mated by the
cern different
ultiple tasks c
ou have in you

in progress s
hen the work

according to th

105 – The st

he following c

e 46 – Chec

as been clearly

task is clear.

eed to be done

he task is a ful

eria for the tas

to complete th

accepted and

task is monito

date for the ta

t required to c

ned to be comp

ress of the tas

be done. Task
team and eas
levels of dif

could concern
ur team memb

state during w
required to d

he agreed to c

tates of the

hecklists are p

cklist for Tas

y identified, is

e have been cl

l team task, gr

sk are clearly d

he task has bee

is progressing

ored.

ask has been a

complete the t

plete accordin

ks is importan

ks correspond
ily manageab

fficulty and ef
n completion
bers based on p

which time the
do the task ha
ompletion crit

Task

provided:

sk

solated and na

learly describe

roup task or in

defined.

en estimated a

g the task.

agreed.

ask is being tr

g to its agreed

nt for monitor

to pieces of w
ble to be imple
ffort required
of a single w
previous work

ere is at least
as been compl
teria.

amed as a task

ed.

ndividual task

and agreed.

racked.

d to completio

ring the work.

work that are e
emented by o

d. It could con
work product
k experience.

one team me
leted. This m

k.

k.

on criteria.

 177

easily
one or
ncern
. The

ember
ay be

178

How the

The prog
shown in

 How the
additiona

Work St

Initiated

Prepared

Started

Under co

Conclude

e Tasks driv

gress of the W
n Figure 106.

e Task Alpha
al checklist ite

tate

d

ontrol

ed

Figure

ve the progr

Work is driven

drives the pr
ems that this k

Table 4

How the Tas
Work

The Tasks n
identified as
work.

	

Tasks are ide
prepare the w

As Tasks mo
work gets sta

After suffici
reaches the un

When all t

e 106 – The

ess of the W

n by the assoc

rogress of the
kernel extensio

47 – How the

k drive the p

needed to pre
part of the ac

entified as par
work and all ar

ove to the in
rted. 	

ent tasks are
nder control s

tasks are do

Tasks drive

Work

ciated Tasks.

e Work Alpha
on adds to the

e Tasks driv

progress of th

epare the Wo
ctivity to initia

rt of the activ
re in the done

n progress sta

e completed
state. 	

one the wo

e the progres

For illustrativ

a is summariz
e Work state ch

ve the progre

e Add

rk are
ate the

Task
have

	

vity to
state.

The	
Wor

Enou
Team

ate the At	 le
seve

work All	 t
their

ork is All	id

ss of the Wo

ve purposes th

zed in Table 4
hecklists.

ess of the W

ditional Check

ks	 to	 be	 und
e	been	identif

Tasks	 to	 be
rk	are	Done.	

ugh	 Tasks	 h
m	to	start	the

east	one	 task
eral	team	mem

team	membe
r	tasks	

dentified	task

 Es

Work

the states of t

47, along wit

Work

klist Items

dertaken	 to	 p
fied.	

e	 undertaken

have	 been	 I
e	real	Work.		

k	has	been	 in
mbers	

ers	 are	 effect

ks	have	been

ssence, Versio

the two Alpha

th the referen

prepare	 the	 w

n	 to	 prepare

dentified	 for

nitiated	by	on

tively	workin

done	

on 1.0

as are

nce to

work	

e	 the	

r	 the	

ne	or	

ng	 on	

Essence,

Closed

The state
or more T

A.4.2.3

Descrip

Practice A

Super-O

Way of W

States

Selected
Integrate

In Use

Working

 Associa

drive : W

, Version 1.0

e of the individ
Tasks to be in

3 Practic

ption

Adoption: The

Ordinate Alp

Working

ed

 well

ations

Way of Workin

concluded.

None

dual Tasks are
progress, or e

ce Adoptio

e adoption of

pha

ng

F

e independent
even done, be

on

a practice ove

The pra
The pra
and are
Team m
work.
The ado

The pro
Workin

Figure 107 –

of the state o
fore the Work

er time and it's

actice is select
actice and rela

ready for use
members are u

opted practice

ogress of the P
ng

– The states

Non

f the overall W
k is under cont

s supporting to

ted.
ated tools have
.
sing the practi

is working w

Practice Adopt

of Practice

e	

Work. For exa
trol.

ooling as part

e been integrat

ice and related

well for the team

tions drive the

Adoption

ample, it is qui

t of a team's w

ated into the w

d tools to acco

am members.

e progress of t

ite possible fo

way of working

way of working

omplish their

the Way of

 179

or one

g.

g

180

Justifica

Teams im
working

Progres

Practice A
and work
other pra
complete

Checkin

To help a

State

Selected

Integra

In Use

Figu

ation: Why

mprove their w
have at least o

ssing the Pr

Adoption und
king well. The
actices. Practic
e their tasks ef

ng the progr

assess the state

d

ated

ure 108 – Pr

Practice Ad

way of workin
one practice.

ractice Adop

dergoes a num
ese states focu
ce use by the
ffectively.

ress of a Pra

e and progress

Checklist

 The pra

 The pra

 The re
other se

 The tea
needed

 The tai

 The too

ractice Adop

option

ng by adopting

ptions

mber of states.
us on the progr
 team and the

actice Adop

s of a Practice

Table 48 – C

t

actice and rela

actice has bee

lated tools ha
elected tools.

am members
d.

ilored practice

ols that have b

ption drive t

g and adapting

As indicated
ression of pra
eir evolution

ption

e Adoption, th

Checklist fo

ated tools hav

en tailored to m

ave been inte

who will us

e is being used

been selected

the progress

g individual pr

in Figure 107
ctice adoption
towards work

he following ch

or Practice A

ve been selecte

meet the const

egrated to wo

e this practic

d by team mem

d for integratio

s of the Way

ractices. Even

7, these states
n as the practic
king well help

hecklists are p

Adoption

ed.

traints of the w

rk together w

e have receiv

mbers to perfo

on with the pr

 Es

y of Working

n teams with t

s are selected,
ces are integr

p team membe

provided:

work environm

with the selec

ved the neces

orm their work

ractices are b

ssence, Versio

g

the simplest w

integrated, In
ated with tool
ers collaborat

ment.

ted practice a

ssary training

k.

eing used by

on 1.0

way of

n Use
ls and
e and

and

g, if

the

Essence, Version 1.0 181

team members.

Working well All team members are making progress as planned by using the tailored practice.

 All team members naturally apply the tailored practice without thinking about it.

 The practice and tools are used routinely and effectively by the team.

 The practice and tools are regularly being inspected and improved by the team.

How Practice Adoption drives the progress of Way of Working

The progress of the Way of Working is driven by the associated Practice Adoptions. For illustrative purposes the states of
the two Alphas are shown in Figure 108.

How the Practice Adoption Alpha drives the progress of the Way of Working Alpha is summarized in Table 35, along
with the reference to additional checklist items that this kernel extension adds to the Way of Working state checklists.

Table 23 – How the Practice Adoption Alpha drives the Way of Work Alpha

Way of Working
State

How the practice adoption drives the
progress of the Way of Work

Additional Checklist Items

Principles Estab-
lished

At least one Practice has been selected in
support of the established principles.

At least one Practice has been selected that sup-
ports the established principles.

Foundation Estab-
lished

As each practice and related tools are selected
and integrated the Way of Working foundation
is established.

At least two practices have been selected and
integrated.

In Use Once the foundation is established, the prac-
tices and tools are used by team members as
part of their way of working.

A sufficient number of practices and tools have
been selected and integrated to support some of
the team member's needs.

In Place The Way of Working is in place when the
selected and integrated practices and tools are
used by all relevant team members.

A sufficient number of practices have been inte-
grated to support the team member's needs,

At least some of the practices and tools are work-
ing well for the team.

Working Well As the practices help team members
effectively complete their work the way of
working reaches a working well state.

All the required practices have been integrated
and are supporting all team member's needs.

Retired None None

The state of the individual Practice Adoption is independent of the state of the overall Way of Working. For example, one
or more Practices may be in use, or even working well, before the Way of Working is working well for the Team.

182 Essence, Version 1.0

Annex B: KUALI-BEH Kernel Extension
(Informative)

This annex defines the example KUALI-BEH6 extension to the Essence Kernel. The KUALI-BEH extension provides
four additional Alphas to allow teams to express their Way of Working and the progress of their Work in software
projects.

B.1 Introduction

B.1.1 Acknowledgements
Hanna J. Oktaba and Miguel Ehécatl Morales Trujillo lead the work on the KUALI-BEH Kernel extension, which was
based on the KUALI-BEH 1.1 revised submission guided by Hanna J. Oktaba.

The following persons contributed valuable ideas and feedback that improved the KUALI-BEH extension: Mario Piattini
Velthuis, Francisco Hernández Quiroz, María Guadalupe Ibargüengoitia González, Jorge Barrón Machado, María Teresa
Ventura Miranda, Liliana Rangel Cano, Nubia Fernández, María de los Ángeles Sánchez Zarazua, Luis Daniel Barajas
González, Sergio Eduardo Muñoz Siller, Elliot Iván Armenta Villegas, María de los Ángeles Ramírez, Miguel Ángel
Peralta Martínez, José León González, Rodrigo Barrera Hernández, José Luis Urrutia Velázquez, Eraim Ruíz Sánchez,
Álvaro Antonio Saldaña Nava, Alberto Tapia, Hugo Rojas Martínez, Evaristo Fernández Perea and Octavio Orozco y
Orozco.

B.1.2 Alphas
The KUALI-BEH extension amplifies the endeavor area of concern adding the following Alphas:

 Practice Authoring as a sub-ordinate of Way of Working

 Method Authoring as a sub-ordinate of Way of Working

 Practice Instance as a sub-ordinate of Work

 Method Enactment as a sub-ordinate of Work

The Practice Authoring Alpha allows the practitioners to express work units as practices. These practices can be
composed as methods by the Method Authoring Alpha. Practice and Method Authoring Alphas help to articulate
explicitly the practitioners’ Way of Working.

The Way of Working defined as practices and/or methods is executed by the organization practitioners and converted into
units of Work using the Practice Instance Alpha. As a set, these practice instances define the Method Enactment that can
be tracked and its progress checked.

Methods and Practices Infrastructure (MPI)

The methods and practices infrastructure is used to store the defined Way of Working. It is a repository of methods and
practices learned by the organization practitioners by experience, abstraction or apprehension. This base of knowledge is
continuously expanded and modified by the practitioners. It can contain methods, practices organized as families,
individual practices or practice patterns. A family of practices is a group of practices that shares an objective. Each of the
practices belonging to the family of practices achieves the same objective. Also, the practices can be grouped by entries
or results. A pattern is a set of practices that can be applied as a general reusable solution to a commonly occurring
problem within a given context.

6 KUALI: Nahuatl word meaning good, fine or appropriate.
 BEH: Mayan word meaning way, course or path.

Essence, Version 1.0 183

The methods and practices infrastructure is used by the organization practitioners as a source of proven organizational
knowledge to define the software projects Way of Working. It can also be useful in training new practitioners
incorporated into the organization.

Methods and Practices Infrastructure Operations

The methods and practices infrastructure and its content are extensible and adaptable in order to support the needs of a
wide variety of methods and practices, and to allow flexibility in the definition and application of these methods by or-
ganization practitioners. For that purpose the following operations are proposed:

Composition

Composition of practices consists in putting together practices in order to make up a method with a specific purpose, to
form a family with a particular objective or to create a pattern as a reusable solution.

The practices are taken from MPI and organized according to the practitioner’s judgment. The composition operation can
also be applied to methods, families of practices and practice patterns.

Figure 109 illustrates the composition of practices to make up a method.

Figure 109 – Practices composition

Modification

A practice modification consists in the adjustment or change, done by a practitioner, to a component of a practice. The
modification could be applied to an entry, result, objective, guide or any other element that is a part of a practice.

The modification operation can also be applied to methods, practices organized as families, individual practices and
practice patterns.

Figure 110 illustrates the modification of a practice.

Figure 110 – Practice modification

B.1.2.1 Practice Authoring

Description

Practice Authoring: It is the defined work guidance, with a specific objective, that advises how to produce a result
originated from an entry. The guide provides a systematic and repeatable set of activities focused on the achievement of
the practice objective and result. The completion criteria associated to the result are used to determine if the objective is
achieved. Particular competences are required to perform the practice guide activities, which can be carried out
optionally using tools. To evaluate the practice performance and the objectives’ achievement, selected measures can be
associated to it. Measures are estimated and collected during the practice execution.

184 Essence, Version 1.0

The practice authoring provides a framework for the definition of the practitioners’ different ways of working. This
knowledge makes up an infrastructure of methods and practices that is defined and applied by practitioners in the
organization.

Super-Ordinate Alpha

Way of Working

Other related Alpha

Method Authoring

States

Identified The way of working to be authored as a practice is identified by the
practitioners.

Expressed The way of working is expressed as a practice using the practice
template.

Agreed The practice is agreed on by the practitioners.
In Use The practice is used in software projects by the practitioners as their

way of working.
In Optimization The practice is adapted and/or improved by the practitioners based

on their experience, knowledge and external influence.
Consolidated The practice is mature and adopted by the practitioners as a routine

way of working.

Associations

expresses : Way of Working The Practice Authoring lets the practitioners express their Way of
Working.

composes: Method Authoring The authored practices can compose a method.

Essence, Version 1.0 185

Figure 111 – The states of Practice Authoring

Justification: Why Practice Authoring

Software Engineering practitioners have an implicit way of working which is constantly improving. By authoring
individual practices they can express them explicitly. Even practitioners with the simplest way of working follow tacit
practices.

Conceptualizing the Practice Authoring

In order to express and define the way of working of practitioners, Practice Authoring has the following related concepts:

 Objective: Short statement that describes the goal that the practice pursues.

 Entry: Expected characteristics of a work product and/or conditions and/or Alpha states needed to start the
execution of a practice.

 Result: Expected characteristics of a work product and/or conditions and/or Alpha states required as outputs
after the execution of a practice.

 Guide: Set of recommended activities aimed to resolve a specific objective transforming an entry into a result.
Particular competences are needed to perform the advised activities. The same practice may be carried out
following different guides, but they should accomplish the practice objective and preserve their entry and result
characteristics. The tools to support the guide activities could be described optionally.

 Activity: Set of tasks that contribute to the achievement of a practice objective.

 Task: Requirement, recommendation or permissible action.

 Measures: List of standard units used to evaluate the practice performance and the objectives’ achievement.

 Completion Criteria: Set of criteria that can be tested as true or false that contributes to the determination of
whether a practice is complete. The completion criteria, derived from the activities, are used to verify if the
produced result achieves the practice’s objective.

Expressed

Agreed

In Use

In
Optimization

Consolidated

P
ra

ct
ic

e
A

u
th

or
in

g The way of working is expressed as a practice using the
practice template.

The practice is agreed on by the practitioners.

The practice is used in software projects by the practitioners as
their way of working.

The practice is adapted and/or improved by the practitioners based
on their experience, knowledge and external influence.

The practice is mature and adopted by the practitioners as a routine
way of working.

Identified
The way of working to be authored as a practice is identified by
the practitioners.

186 Essence, Version 1.0

 Competences: Set of abilities, capabilities, attainments, knowledge and skills necessary to do a certain kind of
work.

 Work Product: Artifact utilized or generated by a practice. It could have a status associated.

 Condition: Specific situation, circumstance or state of something or someone with regard to appearance, fitness
or working order that have a bearing on the software project.

 Tool: Device used to carry out a particular function; it can be expressed as a Resource.

Expressing the Practice Authoring

Practitioners can express their way of working as a practice using the template shown in Table 49. The template asks for
the information and data required by the practice concept. These data have to be collected by the practitioners according
with their experience and knowledge. The filled in template will be stored in the organizational methods and practices
infrastructure.

Table 49 – Practice template

[Identifier]

Practice

[name]
Objective
[objective]

Entry Result
[expected characteristics of work products,
conditions or ALPHA states]

[expected characteristics of work products, conditions
or ALPHA states]

Completion Criteria
[criterionA, criterionB,…]

Guide
Activity [activity1]
Input Output

Tasks (optional) Tool (optional) Competences Measures
[toDoThis,
…,
toDoThat, …]

[list of proposed
tools]

[abilities, knowledge,
attainments, skills, …]

[measureA, measureB,
…]

…

Activity [activityN]
Input Output

Tasks (optional) Tool (optional) Competences Measures
[toDoThis,
…,
toDoThat, …]

[list of proposed
tools]

[abilities, knowledge,
attainments, skills, …]

[measureA, measureB,
…]

Progressing the Practice Authoring

Practice Authoring undergoes a number of states. As indicated in Figure 111, these states are identified, expressed,
agreed, in use, in optimization and consolidated. These states focus on the progression of a way of working while it is
being integrated as a practice.

Essence, Version 1.0 187

Checking the progress of a Practice Authoring

To assess the state and progress of Practice Authoring a checklist is provided in Table 50.

Table 50 – Checklist for Practice Authoring

State Checklist

Identified The practitioners have recognized the need to express their tacit way of working as an explicit
work unit.

 The practitioners have defined the work unit scope to be authored as a practice.

Expressed Each of the way of working elements has been identified and mapped to the practice template
elements.

 The way of working elements have been documented in the practice template.

Agreed The expressed practice has been revised and accustomed by practitioners.

 The expressed practice has been accepted by the practitioners as their explicit way of working.

In Use The agreed practice has been applied by practitioners in software projects.

In Optimization The in-use practice has been modified by practitioners based on the experience of use and/or
the new knowledge acquired.

Consolidated The optimized practice has been regularly used by practitioners.

 The optimized practice has been stabilized and does not suffer frequent changes.

How Practice Authoring defines the Way of Working

In order to define their way of working, the practitioners have to identify the desired objective and the way to produce a
result originated from an entry. The result should accomplish laid down completion criteria evaluated by the
practitioner’s judgment. With the aim to evaluate the practice performance, measures to be collected during the execution
of the practice are defined.

The entries and results can be represented as work products, such as documents, diagrams or code, as conditions, such as
particular situations, for example the stakeholder’s availability to be interviewed or as Alpha states.

Each practice contains work guide, that is, a set of activities that transform entries into results. In addition, the activities
are broken down into particular tasks. The guide activities can be carried out using particular tools. Applying the guide in
a proper way requires specific competences of the practitioners involved in the software project.

As a whole, a set of practices can be comprised as a method that produces an expected software product responding to
particular stakeholder needs and under specific conditions.

The Way of Working is expressed by Practice Authoring as shown in Figure 112.

188 Essence, Version 1.0

Figure 112 – Practice Authoring expresses the Way of Working

A detailed description of how the Practice Authoring expresses the Way of Working is defined in Table 51.

Table 51 – How the Practice Authoring Alpha defines the Way of Working Alpha

Way of
Working State

How the Practice Authoring defines
the Way of Working

Additional Checklist Items

Principles Es-
tablished

The way of working to be authored as a
practice is identified.

The need to express the tacit way of working as an
explicit work unit is recognized.

The work unit scope to be authored as a practice is
identified.

Foundation
Established

The way of working is expressed and
agreed as a practice.

	

Each of the way of working elements has been identified,
mapped to the practice elements and documented.

The expressed practice has been revised and accustomed
by practitioners accepting it as the organizational way of
working.

In Use The practice is used in by practitioners as
their way of working.

The agreed practice has been applied by practitioners.

In Place The practice in use is adapted and/or
improved by practitioners.

The in use practice has been modified or improved by
practitioners.

Working Well The practice is mature and adopted by
the practitioners as a routine way of
working.

The optimized practice has been regularly used by
practitioners and does not suffer frequent changes.

Retired None None

Foundation
Established

In Use

In Place

Working well

Retired

W
ay

 o
f

W
or

ki
n

g

Principles
Established

Expressed

Agreed

In Use

In
Optimization

Consolidated

P
ra

ct
ic

e
A

u
th

or
in

g

Identified

Expresses

Essence, Version 1.0 189

The state of the individual Practice Authoring does not depend on the state of the overall Way of Working.

Example of Practice Authoring defining a Way of Working

An example of an authored practice using the Practice template is shown in Table 52.

Table 52 – Practice Authoring example

DailySCRUM Practice
Daily SCRUM Meeting

Objective
Development Team meeting to synchronize activities and create (adapt) a plan for the next 24 hours. To
assess progress toward the Sprint Goal and to assess how progress is trending toward completing the
work in the Sprint Backlog.
Entry Result
Conditions
 Every Development Team member

knows the answer to the following ques-
tions:

What has been accomplished since
the last meeting?
What will be done before the next
meeting?
What obstacles are in the way?

 Held at the same time and place each
day.

Work products
 Sprint Backlog
 Product Backlog items selected for this Sprint
 Updated Plan for delivering them

Conditions
 Improved the Development Team’s level of project

knowledge.

Completion Criteria
Development Team should be able to explain to the Product Owner and Scrum Master how it intends to
work together as a self-organizing team to accomplish the goal and create the anticipated increment in
the remainder of the Sprint.

Guide
Activity The Development Team often meets immediately after the Daily Scrum to re-plan the rest of

the Sprint’s work.
Input Output
Conditions
 Every Development Team member

knows the answer to the questions
 The Development Team is in time and

place

Work products
 Sprint Backlog
 Product Backlog items selected for this Sprint
 Updated Plan for delivering them

Conditions
Improved the Development Team’s level of project
knowledge.

Tasks (optional) Tool (optional) Competences Measures
Ask: What has been
accomplished since
the last meeting?

Ask: What will be
done before the next
meeting?

Ask: What obstacles
are in the way?

 Development Team
consists of professionals
who do the work of
delivering a potentially
releasable Increment of
“Done” product at the end
of each Sprint.

Meeting duration
[suggested time-box 15
minutes].

190 Essence, Version 1.0

B.1.2.2 Method Authoring

Description

Method Authoring: A method is an articulation of a coherent, consistent and complete set of practices, with a specific
purpose that fulfills the stakeholder needs under specific conditions.

The method authoring provides a framework for the definition of the practitioners’ different ways of working using the
authored practices to compose it. This knowledge makes up an infrastructure of methods and practices that can be de-
fined and applied by practitioners of the organization in software project endeavors.

Super-Ordinate Alpha

Way of Working

Other related Alpha

Practice Authoring

States

Identified Individual practices, needed to accomplish an endeavor, to be
authored as a method are selected by the practitioners.

Integrated The method is integrated as a composition of agreed practices.
Well Formed The method is agreed on by the practitioners and accomplishes the

properties of coherency, consistency and completeness.
In Use The method is used in software projects by the practitioners.
In Optimization The method is adapted and/or improved by the practitioners based

on their experience and external influence.
Consolidated The method is mature and adopted by practitioners as a routine way

of working.

Associations

defines: Way of Working The progress of the Method Authoring defines the maturity of the
practitioners’ Way of Working.

composes: Practice Authoring The authored practices compose a method.

Essence, Version 1.0 191

Figure 113 – The states of Method Authoring

Justification: Why Method Authoring

Software Engineering practitioners have an implicit way of working to accomplish their different types of endeavors. By
authoring methods they can express them explicitly. Even practitioners with the simplest way of working follow tacit
methods as a composition of agreed practices.

Conceptualizing the Method Authoring

In order to express and define the way of working of practitioners, Method Authoring has the following related concepts:

 Software Project: Temporary endeavor undertaken by practitioners using a method in order to develop,
maintain or integrate a software product, responding to specific stakeholder needs and under particular
conditions. The stakeholder needs, project conditions and, if applies, already existing software products are
considered as the entries of a software project. The result is a new, modified or integrated software product.

 Stakeholder: Individual or organization having a right, share, claim or interest in a software product or in its
possession of characteristics that meet their needs and expectations.

 Software Product: Result of a method execution. It may contain a set of computer programs, procedures, and
possibly associated documentation and data. It is a specialization of a work product.

 Stakeholder Needs: Representation of requirements, demands or exigencies expressed by the stakeholders to
the practitioners.

 Project Conditions: Factors related to the project that could affect its realization. Complexity, size, time and
financial restrictions, effort, cost and other factors of the project environment are considered. It is a
specialization of a condition.

 Practitioners: Group of practitioners belonging to an organization that works together in a collaborative manner
to obtain a specific goal. Business experts and other representatives on behalf of a stakeholder can be included

Integrated

Well Formed

In Use

In
Optimization

Consolidated

M
et

h
od

 A
u

th
or

in
g

The method is integrated as a composition of agreed practices.

The method is agreed on by the practitioners and accomplishes
the properties of coherency, consistency and completeness

The method is used in software projects by the practitioners.

The method is adapted and/or improved by the practitioners based
on their experience and external influence.

The method is mature and adopted by practitioners as a routine
way of working.

Identified
Individual practices, needed to accomplish an endeavor, to be
authored as a method are selected by the practitioners.

192 Essence, Version 1.0

as practitioners.

 Practitioner: Professional in Software Engineering that is actively engaged in the discipline. The practitioner
should have the ability to make a judgment based on his or her experience and knowledge.

Expressing the Method Authoring

Practitioners can express a method using the template shown in Table 53. The template asks for the information and data
required by the method concept. These data have to be collected by the practitioners according to their experience and
knowledge. The filled in template will be stored in the organizational methods and practices infrastructure.

Table 53 – Method template

[identifier]

Method

[name]
Purpose
[purpose]

Entry Result
[stakeholder needs, project conditions,…]

[software product,…]

Practices
[practiceRequirements,
…,
practiceDelivery, …]

Progressing the Method Authoring

Method Authoring undergoes a number of states. As indicated in Figure 113, these states are selected, integrated, well
formed, in use, in optimization and consolidated. These states show the progression of the method’s maturity and
stability, from the initial integration till the routine use by the practitioners.

A method is ready to be used in software projects when its definition reaches the well formed state. It means that its set of
practices should preserve the properties of coherency, consistency and completeness to allow the achievement of a
method purpose.

The Method properties are defined as follows:

 Coherent Set of Practices: A set of method practices is coherent if each practice objective contributes to
achieve the method purpose. Figure 114 illustrates a coherent set of practices. Graphical symbol M represents a
method and P a practice.

Figure 114 – Coherent set of practices

 Consistent Set of Practices: A set of method practices is consistent if:

o there exists at least one practice which entry is similar with the method’s entry and at least one practice
which result is similar to the method’s result AND

o For each practice of the set:

Essence, Version 1.0 193

 its result is similar to the entry of another practice AND

 its entry is similar to the result of another practice.

Figure 115 illustrates a consistent set of practices.

Figure 115 – Consistent set of practices

 Similar: Two or more elements are similar, if according to the practitioner’s judgment their characteristics are
analogous.

 Complete Set of Practices: A set of method practices is complete if the achievement of all practice objectives
fulfills entirely the method purpose, and each of the practice result is used as an entry of another practice or is a
result of the method. Figure 116 illustrates a complete set of practices.

Figure 116 – Complete set of practices

Checking the progress of a Method Authoring

To assess the state and progress of Practice Authoring a checklist is provided in Table 54.

Table 54 – Checklist for Method Authoring

State Checklist

Identified The practitioners have recognized the need to interrelate their individual agreed practices to
accomplish software projects.

 The practitioners have defined the purpose, entry and result of the method in the template.

 The practitioners have identified the agreed practices to be integrated as a method.

Integrated Each of the selected agreed practices have been added to the method template.

Well Formed The integrated method has accomplished the coherence, consistency and completeness
properties.

 The integrated method has been revised and customized by practitioners.

 The integrated method has been accepted by the practitioners as their explicit way of working.

194 Essence, Version 1.0

In Use The well-formed method is applied in software projects by practitioners.

In Optimization The in-use method has been modified by practitioners based on the experience of use and/or
the new knowledge acquired.

Consolidated The optimized method has been used by practitioners regularly.

 The optimized method has been stabilized and does not suffer frequent changes.

How Method Authoring defines the Way of Working

In order to form a method, practitioners have to define its purpose, considering the specific stakeholder needs and the
desired characteristics of the software product. In Software Engineering context, a method pursues a purpose related to
developing, maintaining or integrating a software product. The set of practices that makes up a method should contribute
directly to the achievement of this purpose.

The Way of Working is defined by Method Authoring as shown in Figure 117.

Figure 117 – Method Authoring defines the Way of Working

A detailed description of how the Method Authoring defines the Way of Working is shown in Table 55.

Foundation
Established

In Use

In Place

Working well

Retired

W
ay

 o
f

W
or

ki
n

g

Principles
Established

Defines

Integrated

Well Formed

In Use

In
Optimization

Consolidated

M
et

h
od

 A
u

th
or

in
g

Identified

Essence, Version 1.0 195

Table 55 – How the Method Authoring Alpha defines the Way of Working Alpha

Way of Working
State

How the Method Authoring defines the Way
of Working

Additional Checklist Items

Principles
Established

The individual practices to be authored as a
method are selected by the practitioners.

The practitioners have recognized the need to
interrelate and integrate their agreed practices to
accomplish a defined purpose and result.

Foundation
Established

The method is integrated as a composition of
agreed practices; it accomplishes the properties
of coherency, consistency and completeness.

The integrated method has accomplished the
coherence, consistency and completeness
properties.

It has been revised and customized by
practitioners as their explicit way of working.

In Use
The method is used by the practitioners. The well formed method is applied by

practitioners in software projects.

In Place
The method is adapted and/or improved by the
practitioners.

The in use method has been modified by
practitioners.

Working Well
The method is mature and adopted by
practitioners as a routine way of working.

The optimized method has been used regularly
and has been stabilized by practitioners.

Retired None None

The state of the individual Method Authoring does not depend on the state of the overall Way of Working.

196 Essence, Version 1.0

Example of Method Authoring defining a Way of Working

An example of an authored method using the Method template is shown in Table 56.

Table 56 – Practice Authoring example

SI Method
Method for developing a new software product.

Purpose

Systematically perform the analysis, design, construction, integration and tests activities for new software products according to the
specified requirements.
Entry Result
Stakeholders Needs
Statement of Work
 Product description: purpose of the product and general cus-

tomer requirements
 Scope description of what is included and what is not
 Project objectives
 Deliverables list of products to be delivered to customer

Project Conditions
Project conditions established by the customer
Schedule of the Project
Identification of Project Risks

Software Product
 Requirements Specification
 Software Design
 Software Components
 Software
 Test Cases and Test Procedures
 Test Report
 Maintenance Documentation

Practices
Software Requirements Analysis (SRA)
Software Architectural and Detailed Design (SADD)
Software Construction (SC)
Software Integration and Tests (SIT)
Product Delivery (PD)

B.1.2.3 Practice Instance

Description

Practice Instance: During the enactment of a method by practitioners, each practice is initially instantiated as work to be
done. Later it changes its state to can start, in execution, stand by or in verification until it is finished or canceled.

Super-Ordinate Alpha

Work

Other related Alpha

Practice Authoring

Method Authoring

Method Enactment

Essence, Version 1.0 197

States

Instantiated The practice instance is created as a work unit to be done.
Optionally, practice measures can be estimated.

Can Start The required entry has been assigned to the practice instance and it can
start it execution.

In Execution The practice instance has been chosen to be executed, its measures
have been estimated and practitioners have agreed who is responsible
for it. The practice instance guide is being carried out.

Stand By The practice instance execution has been interrupted; its associated
items remain paused.

In Verification The practice instance result is being verified against the completion
criteria.

Cancelled The practice instance is over; practitioners have quit its associated
items.

Finished The practice instance is over and its result has been produced correctly.

Associations

drives : Method Enactment The progress of the Practice Instance drives the progress of the Method
Enactment.

Figure 118 – The Practice Instance states

Justification: Why Practice Instance

Practitioners execute work units in order to achieve a specific objective. This work, even the simplest, is tracked and
practitioners monitor its progress and verify its completion. Also, the temporal suspension or cancelation of the work
corresponds to the everyday practitioner´s experience.

Expressing the Practice Instance Progress

The practice instance board reflects the practice state at one particular moment. It registers the practitioners responsible

Can Start

In Execution

In Verification

Finished

P
ra

ct
ic

e
In

st
an

ce The required entry has been assigned to the practice instance
and it can start it execution.

The practice instance has been chosen to be executed, its measures
have been estimated and practitioners have agreed who is
responsible for it. The practice instance guide is being carried out..

The practice instance result is being verified against the
completion criteria.

The practice instance is over and its result has been produced
correctly.

Instantiated
The practice instance is created as a work unit to be done.
Optionally, practice measures can be estimated.

198 Essence, Version 1.0

for its execution and shows the measures estimated and actual data. A numerical percentage can be associated to each
practice instance state in order to calculate its progress. Table 57 shows the example of its distribution.

Table 57 – Practice Instance board

Practice Instance Board

Entry Result
[list of entries]

[list of results]

Practitioners Measures
[list of responsible practitioners]

Estimated Actual
[list of measures
estimations]

[list of actual measures]

Activity Progress

Activities Progress Responsible Comments

[activity 1] [numerical
value]

[organization
practitioner]

[comments and important notes]

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%

Progressing the Practice Instance

Practice Instance undergoes a number of states as indicated in Figure 118. The complete set of states are instantiated, can
start, in execution, stand by, in verification, cancelled and finished. These states focus on the progression of the method
enactment done by practitioners. See Table 58.

Table 58 – Practice Instance transitions

From Practice
Instance State

Event that causes the transition To Practice
Instance State

Instantiated
Practitioners assign work products and/or conditions, which meet the
required practice entry characteristics. Optionally practitioners can estimate
the practice measures.

Can Start

Can Start
Practitioners choose a practice instance, estimate the practice measures,
agree who is responsible for it and start its execution.

In Execution

In Execution Practitioners decide to interrupt the practice instance execution. Stand By

In Execution
Practitioners decide to verify the completion criteria to assure that the result
of the practice is correct.

In Verification

In Execution Practitioners decide to cancel the practice instance execution. Cancelled
Stand By Practitioners decide to restart the practice instance execution. In Execution

In Verification
Practitioners realize that the work products or conditions do not meet the
completion criteria and corrections to them are required. Practitioners verify
them as incorrect.

In Execution

In Verification
Practitioners confirm that the generated work products and/or reached
conditions meet the completion criteria. Practitioners verify them as correct.

Finished

Figure 119 shows the Practice Instance as an UML states diagram.

Essence, Version 1.0 199

Figure 119 – Practice Instance Lifecycle

Checking the progress of a Practice Instance States

To assess the state and progress of Practice Instance a checklist is provided in Table 59.

Table 59 – Checklist for Practice Instance

State Checklist

Instantiated The practitioners have identified the work to be done.

 The needed work unit has been created as the practice instance.

 The practice instance measures have been optionally estimated by practitioners.

Can Start The required practice instance entry has been created and assigned.

 The practice instance measures have been estimated.

In Execution The practitioners have chosen a practice instance that can start.

 The practitioners responsible for the practice instance have been agreed upon

 The practitioners are working on the practice instance following the guide.

Stand By The execution of the practice instance has been interrupted.

 The practitioners have paused any work related to the practice instance.

In Verification The practitioners have produced a result after executing the practice instance.

 The practitioners are verifying the result using the related completion criteria.

Cancelled The practitioners have stopped permanently the practice instance work.

 The associated items of the practice instances have been quit.

Finished The practitioners have finalized the practice instance work.

 The practitioners have produced a result, which was verified as correct.

200 Essence, Version 1.0

How Practice Instance drives the Work

The set of practices instantiated as work units are planned to be executed during a software project. Each practice
instance work unit follows the practice guide.

When a required entry is available, the practitioners assign it to the appropriate practice instance. The practice instance,
with the assigned entry, changes to a Can Start state.

To start the practice instance execution, the practitioners have to estimate the measures associated to the practice, agree
on the work distribution, on who is responsible for it and begin to work. This means that the practice instance changes to
an In Execution state.

During the practice instance execution, the practitioners can decide to interrupt it, so the practice instance changes to a
Stand By state. At some point, the practitioners may decide to restart and the practice instance changes again to an In
Execution state.

The practice instance execution produces a result, which should be verified by the practitioners using the completion
criteria. At this moment the practice instance changes to an In Verification state.

If the practitioners verify the result as correct, the practice instance is finished. If it is not the case, the practitioners
should correct the result and the practice instance goes back again to the In Execution state. In some cases, the
practitioners can decide to cancel the practice instance. If the practice is finished or cancelled, the measures real data
associated to the practice instance should be collected.

The Work is driven by Practice Instance as shown in Figure 120.

Figure 120 – Practice Instance drives the progress of the Work

A detailed description of how the Practice Instance drives the Work is defined in Table 60.

Table 60 – How the Practice Instance Alpha drives the Work Alpha

Work State How the Task drive the progress of the
Work

Additional Checklist Items

Initiated The practice instance is created as a work unit
to be done.

The practitioners have identified the work to be
done as instances of practices.

Prepared

Started

Under
Control

Concluded

Closed

W
or

k

Initiated

Drives

Can Start

In Execution

In Verification

Finished

P
ra

ct
ic

e
In

st
an

ce

Instantiated

Essence, Version 1.0 201

Prepared The required entry has been assigned to the
practice instance and it can start at any time.

The practice instance is in Can Start state.

Started The practice instance has been chosen, its
measures have been estimated and
practitioners have agreed who is responsible
for it. The guide associated with the practice
instance is being carried out.

The practice instance is In Execution state.

Under control The practice instance result is being verified
against the completion criteria.

The practice instance is In Verification state.

Concluded The practice instance is over and its result has
been produced correctly.

The practice instance is in Finished state.

Closed None None

The state of the individual Practice Instances are independent from the state of the overall Work.

Example of Practice Instance driving Work

An example of a practice instance using the Practice Instance Board is shown in Table 61.

Table 61 – Practice Instance board example

SRS Practice Instance Board
Entry Result
Stakeholder Need 1 (SH1)
Stakeholder Need 2 (SH2)

Software Requirement Specification (SH1, SH2)

Practitioners Measures
Olivia
Tania
Manuel

Estimated Actual
Effort: 46 man-hours
Start date: 02/09/2012
Finish date:02/19/2012

[list of actual measures]

Activity Progress

Activities Progress Responsible Comments

1. Document or update
the Requirements
Specification.

100 Olivia
Tania

2. Validate and obtain
approval of the
Requirements
Specification.

50 Tania The client is busy and is taking too long
to validate it.

3. Incorporate the
Requirements
Specification to the
Software Configuration in
the baseline.

 Tania
Manuel

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

202 Essence, Version 1.0

B.1.2.4 Method Enactment

Description

Method Enactment: It occurs in the context of a software project execution. Before starting the method enactment, the
practitioners assigned to the software project get to know the stakeholder needs and are informed about the software
project conditions. In case of a maintenance or software integration project, the already existent software product(s)
should also be available.

Super-Ordinate Alpha

Work

Other related Alpha

Practice Authoring

Method Authoring

Practice Instance

States

Selected The method has been selected from the organizational methods and
practices infrastructure according to general characteristics of a
project (new development, maintenance or integration). The
practitioners have to fulfill the required competences specified in
the method practices guides. If it is not the case, appropriate
training is needed.

Adapted The method has been adapted and the resulting set of practices is
instantiated as work units planned to be executed during the
project.

Ready to Begin The method has at least one practice instance in Can Start state. The
method is ready to begin at any time.

In Progress The method has at least one practice In Execution, Stand By or In
Verification states. The method remains in this state while it is
being applied.

Progress Snapshot The method context is being analyzed and under discussion in order
to take actions.

Cancelled The method is over and its result has not been produced.
Finished The method is over and its result can be delivered.

Associations

drives : Work The progress of the Method Enactment drives the progress of the
Work.

Essence, Version 1.0 203

Figure 121 – The states of Method Enactment

Justification: Why Method Enactment

Practitioners execute software projects following a set of practices (method) in order to achieve a specific purpose. This
work, even the simplest, is tracked and its progress is monitored by practitioners.

Adapted

Ready to
Begin

In Progress

Finished

M
et

h
od

 E
n

ac
tm

en
t

The method has been adapted and the resulting set of
practices is instantiated as work units planned to be executed
during the project.

The method has at least one practice instance in Can-Start state.
The method is ready to begin at any time.

The method has at least one practice In-Execution, Stand-By or
In-Verification states. The method remains in this state while it is
being applied.

The method is over and its result can be delivered.

Selected

The method has been selected from the organizational methods
and practices infrastructure according to general characteristics of
a project. The practitioners have to fulfill the required competences
specified in the method practices guides. If it is not the case,
appropriate training is needed.

204 Essence, Version 1.0

Expressing the Method Enactment

The method enactment board is used to communicate the method states changes. The practice instances, organized by
state, are associated to method enactments states. Optionally, a responsible person and a reporting date can be added to
each practice instance row. A numerical value can be assigned to each practice instance state in order to calculate the
global progress of the method enactment. See Table 62.

Table 62 – Method Enactment board

Method Enactment Board

[today’s
date]

[end’s
date]

Entry Result
[list of entries]

[list of results]
Days left

Enactment States

Adapted
Ready to

Begin
In Progress Progress Snapshot

Global
Progress Instantiated

20%
Can Start

40%

In
Execution

60%

In
Verification

80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1

 [practice
instance ID,
responsible
and reporting
date]

60

2

[practice
instance ID,
responsible
and reporting
date]

20

3

 [practice
instance ID,
responsible
and reporting
date]

100

Total 180/300

 Work Product / Conditions
 [list of work products and/or conditions paired with their respective status]

Progressing the Method Enactment

Method Enactment undergoes a number of states as indicated in Figure 121. The complete set of states are selected,
adapted, ready to begin, in progress, progress snapshot, cancelled and finished. These states focus on the progression of
the work developed by the practitioners. See Table 63.

Table 63 – Method Enactment transitions

From Method
Enactment

State

Event that causes the transition To Method
Enactment

State

Selected

Practitioners adapt the selected method, taking into account stakeholder needs and
project conditions. Practitioners analyze the selected method practices and, if
necessary, apply the practice substitution, concatenation, splitting or combination.
For each practice of the adapted method the practice instances are created and,
optionally, the practices measures estimated.

Adapted

Adapted
Practitioners assign an entry to at least one practice instance. Ready to

Begin

Ready to
Begin

Practitioners choose a practice instance in Can-Start state, estimates the measures
associated to it, agrees on work distribution, on who is responsible for it and begins
its execution.

In Progress

In Progress Practitioners verify a result or decide to pause the execution of a practice instance. In Progress

Essence, Version 1.0 205

In Progress
Practitioners produce a verified result and collects measures; or practitioners cancel
a practice instance and collect measures; or changes occur in stakeholder needs or
project conditions.

Progress
Snapshot

Progress
Snapshot

Practitioners assign available entries to the existing practice instances, those changes
their states to the Can-Start state.

Ready to
Begin

Progress
Snapshot

Practitioners apply method practices adaptation, taking into account the practice
instance cancelation, the changes in stakeholder needs and/or project conditions, or
anything else that can affect the project. As a result, new practices are Instantiated.

Adapted

Progress
Snapshot

Practitioners decide to stop the method permanently.
Cancelled

Progress
Snapshot

Practitioners produce the expected method result and all of the practice instances are
in the Finished or Cancelled states.

Finished

The method enactment can reach more than one state at the same time, caused by the behavior of the practice instances
lifecycle. For example, in some moment, a group of practice instances can be in execution state, other practices in can
start state and others are finished, causing that the method enactment reaches different states at the same time. So, the
method enactment behavior can be represented as a variation of a non-deterministic finite-state machine. See Figure 122.

Figure 122 – Method Enactment

Method adaptation is the action done by the practitioners taking into account the stakeholder needs and their changes, the
project conditions and other factors that affect a software project.

The purpose of adapting a method is to identify and/or modify the work units to be done during the software project
execution. To reach this goal the following actions should be taken:

 Practitioners have to analyze the practices of the selected method or the remaining practice instances and, if
necessary, apply the practice substitution, concatenation, splitting or combination.

 The resulting set of practices is instantiated as work units planned to be executed during the software project.
Each of the practice instances involves following the practice guide.

The practice substitution, concatenation, splitting and combination are defined as follows:

 Practice Notation: Let’s define a practice P as a triple formed by an Entry (E), an Objective (O) and a Result
(R)

 , ,P E O R

206 Essence, Version 1.0

 Substitution of Practices: The substitution of practices consists in replacing a practice by another equivalent
practice.

 1 1 1 1 2 2 2 2

1 2

1 2

Let , , and , , practices,

can be by if and only if:

 is equivalent to

P E O R P E O R

P substituted P

P P

The equivalence between practices holds when similar results are reached starting from similar entries and
similar objectives are fulfilled.

A practice is to a practice ' if and only if:

 is similar to ' and

 is similar to ' and

 is similar to '

P equivalent P

E E

R R

O O

Notice that similarity is recognized and dictated by the practitioner’s judgment.

Figure 123 illustrates the substitution of a practice.

Figure 123 – Practice substitution

The original properties of the method after adaptation are preserved, because of the fact that the new practice
holds an objective, entry and result similar to the substituted practice.

 Concatenation of Practices: If one practice has a result similar to the entry of another practice, both can be
integrated into one practice, applying the concatenation operation. The resulting objective will be the union of
both original objectives.

Formally, the concatenation operation is defined as follows:

1 1 1 1 2 2 2 2

1 2

3 1 2

3 1 1 2 2

Let , , and , , practices

and similar to .

A practice is a correct of the practices and if:

, and ,

P E O R P E O R

R E

P concatenation P P

P E O O R

The concatenation operation can be applied as many times as required.

Essence, Version 1.0 207

Figure 124 illustrates the concatenation of practices.

Figure 124 – Practice concatenation

 Split of Practices: A practice splitting consists in the partition of the original practice into two different
practices preserving the original objective accomplishment and similar entries and results.

Formally, the splitting operation is defined as follows:

1 1 1 1 2 2 2 2

1 2

1 2

1 2

1 2

Let , , and , , practices.

 and are a correct of , , if:

 union is similar to and

 union is similar to and

 and

P E O R P E O R

P P split P E O R

E E E

R R R

O O O

Figure 125 illustrates the splitting of a practice.

Figure 125 – Practice splitting

208 Essence, Version 1.0

 Combination of Practices: Combining a practice consists in bringing two different practices into one. The
resulting practice preserves the original objectives accomplishment and an integrated guide. The integrated
guide is formed by the activities of both original practices merged into a new one.

Formally, the combining operation is defined as follows:

1 1 1 1 2 2 2 2

1 2

1 2

1 2

1 2

Let , , and , , practices.

, , is a correct of and if:

 is similar to union and

 is similar to union and

 and

P E O R P E O R

P E O R combination P P

E E E

R R R

O O O

If operations of practice substitution, concatenation, splitting and combination are applied strictly following the
mentioned rules, the original properties of the method coherency, consistency and completeness are preserved.

Figure 126 illustrates the combination of practices.

Figure 126 – Practice combination

Checking the progress of a Method Enactment

To assess the state and progress of Method Enactment a checklist is provided in Table 64.

Table 64 – Checklist for Method Enactment

State Checklist

Selected The practitioners have selected a well-formed method from the methods and practices
infrastructure.

 The practitioners have fulfilled the required competencies specified in the method practices
guides.

Adapted The practitioners have analyzed the stakeholder needs and conditions of the software project.

 The practitioners have adapted the selected method.

 Each of the practices of the method has been instantiated as work units planned to be executed
during the software project.

Ready to Begin The method has at least one practice instance in Can Start state.

 The method and the practitioners are ready to begin the work.

In Progress The practitioners are applying the method.

Progress The practitioners are analyzing the method execution context.

Essence, Version 1.0 209

Snapshot The practitioners are discussing and taking decisions about the work continuation as it was
planned or if the method requires an adaptation.

Cancelled The practitioners have stopped permanently the method execution.

 The associated items of the method have been quit.

 The result has not been produced.

Finished The practitioners have finalized their work.

 The practitioners have produced a result that can be delivered.

How Method Enactment drives the Work

At the beginning of a software project, the practitioners select a method from the organizational method and practices
infrastructure according to the general characteristics of the project. In order to perform successfully the selected method,
the practitioners have to fulfill the competences requirements specified in the practices guide. If it is not the case,
appropriate training is recommended.

The selected method usually has to be adapted in accordance with stakeholder needs and project conditions.

The purpose of adapting a method is to identify work units to be done during the software project execution. To reach this
goal, the practitioners have to analyze the practices of the selected method and, if necessary, apply the practice
substitution, concatenation, splitting or combination. In other words, one practice can be substituted by an equivalent one
(substitution), two practices can be juxtaposed (concatenation), one practice can be divided into two practices (splitting)
or two practices can be integrated in one (combination).

The consistency, coherence and completeness properties of the original set of practices have to be preserved. The
resulting set of practices is instantiated as work units planned to be executed during the project. Each practice instance
work unit requires following the practice guide. As a result, the method changes to the adapted state.

When at least one practice is in a Can Start state, the method reaches a Ready to Begin state. If the method enactment
changes to an In-Progress state it means that the practice instance changes to an In Execution state.

The method enactment can change to a Progress Snapshot state whenever the practitioners produce a verified result,
cancels a practice instance, or changes in the stakeholder needs or the project conditions occur. In this state, the
practitioners have to analyze the situation and decide to take one of the following actions:

 Assign available entry to the existing practice instances and continue the enactment of the method;

 Apply adaptation of method practices; taking into account the practice instance cancelation, the stakeholder
needs change requests, the changes to the project conditions, or anything else that can affect the project.

Lastly, the method enactment can be cancelled, if the practitioners decide so, or finished, if the expected software product
is produced and all the practice instances are finished or cancelled.

The Work is driven by Method Enactment as shown in Figure 127.

210 Essence, Version 1.0

Figure 127 – Method Enactment Drives the progress of the Work

A detailed description of how the Method Enactment drives the Work is defined in Table 65.

Table 65 – How the Method Enactment Alpha drives the Work Alpha

Work State How the Task drive the progress of the
Work

Additional Checklist Items

Initiated The method has been selected as the work to
be done.

The practitioners have selected a well-formed
method.

Prepared The method has been adapted and it is ready
to begin at any time.

The practitioners adapted the selected method and
it has at least one practice instance in Can Start
state.

Started The practitioners are applying the method. The method has at least one practice In
Execution, Stand By or In Verification states.

Under control The method context is being analyzed and
under discussion in order to take actions.

The method has at least a practice instance
Finished or Cancelled or the method context
changed.

Concluded The method is over and its result can be
delivered.

All the practice instances are in Finished or
Cancelled states.

The produced result can be delivered.

Closed None None

The state of the Method Enactment does not depend on the state of the overall Work.

Prepared

Started

Under
Control

Concluded

Closed

W
or

k

Initiated

Drives

Adapted

Ready to
Begin

In Progress

Finished

M
et

h
od

 E
n

ac
tm

en
t

Selected

Essence, Version 1.0 211

Example of Method Enactment driving Work

An example of method progress using the Method Enactment Board is shown in Table 66.

Table 66 – Method Enactment board example

SI Method Enactment Board
02/09/12 06/30/12

Entry Result
Stakeholders Needs
Statement of Work
 Product description: purpose of the

product and general customer require-
ments

 Scope description of what is included
and what is not

 Project objectives
 Deliverables list of products to be deliv-

ered to customer
Project Conditions
Project conditions established by the
customer
Schedule of the Project
Identification of Project Risks

Software Product
 Requirements Specification
 Software Design
 Software Components
 Software
 Test Cases and Test Procedures
 Test Report
 Maintenance Documentation

95
days left

Enactment States

Adapted
Ready to

Begin
In Progress Progress Snapshot

Global
Progress Instantiated

20%
Can Start

40%

In
Execution

60%

In
Verification

80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1 SRE 100

2 DES 40

3 CON 20

Total 160/300

 Work Product / Conditions
 Statement of Work – Agreed

Requirements Specification – Validated

212 Essence, Version 1.0

Annex C: Alignment with SPEM 2.0
(Informative)

This annex provides the discussion on the SPEM 2.0 issues from the RFP.

C.1 Alignment with SPEM 2.0
This section discusses why we did not use SPEM 2.0 as a baseline and clearly describes and demonstrates the main
differentiators.

C.1.1 Why do you not base your submission on SPEM 2.0?
The vision and requirements of the Essence language is different from that which drove the development of the SPEM
2.0 specification. The main objectives of the Essence language are to:

 Address the mass market of practitioners, not just the limited market of method engineers7;

 Support a kernel that is able to represent and measure the state and health of a software engineering endeavor;

 Support agility in the adoption and adaption of software engineering practices;

 Have dynamic semantics supporting enactment built in.

These objectives have driven the architecture and design of the Essence language in a separate direction from SPEM. The
underlying architecture of SPEM is not compatible with the aims of Essence. It would of course be possible to reengineer
SPEM so that it better aligns with these objects. However, we believe that such a reengineered SPEM version will require
more than a few changes and the result will be fundamentally different from the current SPEM specification.

Changing the underlying architecture of SPEM is not something that could be achieved with little effort, so such incom-
patibility points to the need for a new non-SPEM language. Starting afresh makes it easier to innovate and clearly define
the essential features of the language.

The Essence language architecture has the following differences compared to SPEM:

 Focused and small specification that is extensible

 Domain-specific language instead of a UML profile.

 Support for dynamic semantics

Because of these architectural features we also believe it to have a:

 Wider market appeal

All of these points are further elaborated in the following subsections.

C.1.1.1 Focused and small specification that is extensible

One main criticism of SPEM is that it is too complex and that we need a simpler language8 that appeals to the
practitioners, which is easy to use and can be extended over time. The goal of the Essence language is not to define and

7 "The Software and Systems Process Engineering Meta-model (SPEM) is a process engineering meta-model as well as
conceptual framework, which can provide the necessary concepts for modeling, documenting, presenting, managing,
interchanging, and enacting development methods and processes. An implementation of this meta-model would be
targeted at process engineers, project leads, project and program managers who are responsible for maintaining and
implementing processes for their development organizations or individual projects." [SPEM2, Section 6.2, Page 9]
8 http://philippe.kruchten.com/2011/03/11/we-do-not-need-richer-software-process-models/

Essence, Version 1.0 213

include concepts that are useful to most software engineering endeavors, but to identify a small set of concepts language
constructs that are essential to all software engineering endeavors.

To achieve this, the following ideas have underpinned the Essence language design:

 Define a minimal language focusing on the essentials of software engineering methods that can be used by prac-
titioners.

 Separate the essentials language features from what is useful, what is nice to have and what can be provided as
language extensions.

 Focus on practices and have an inherent design in the language that allows us to structure, describe and use
practices in an easy and standardized manner.

 Support different user group with require different level of details and views of a method.

If SPEM is extended to accommodate extra ideas/constructs form Essence it will get larger. This size will be a barrier to
adoption, especially by smaller organizations who may fear that the costs of adoption (training, tools, learning curves,
customization, change management, etc.) will never be compensated by benefits.

In contrast the proposed Essence language architecture provides:

 A small set of concepts capturing the essentials.

 Language extensions mechanisms to introduce new useful concepts.

 Layering and view concepts to support incremental adoption, learning and understanding.

The extension mechanism should be powerful enough to define missing SPEM features as a possible, standardized
language extension library.

C.1.1.2 Domain-specific language instead of a UML profile

One of the ideas behind SPEM 2.0 was to closely align and reuse elements of UML 29 and also define a UML Profile
which could be adopted by UML tool vendors. While this may have been common approach back in 2007, where UML
was still being promoted as the universal language for everything software-related, we have later come to realize that
UML is not the universal answer. OMG is embracing a family of different languages (all defined using the same
metamodel architecture, i.e., MOF), where UML is just one part of a big family.

The original intent of a UML profile was to tailor UML10. We argue that we need to define a new simpler foundation, i.e.,
metamodel, for the Essence language, and this basis is definitely not UML. UML is useful for describing software
architectures and designs, but should not be used as a basis for describing the Kernel, Practices and Methods. By
abandoning the dependency to UML, we are no longer restricted to using/extending the UML syntax, and can define a
language with an easy-to-use concrete syntax (both textual and graphical).

The concept of a card (shown below) is an example of a useful and rich graphical view that would not be possible to
define using the UML profiling constructs.

9 "The ability to leverage these features, as well as the ability to work with UML 2 tools are powerful enhancements to
SPEM 2.0. In addition, there was specific feedback from implementers of SPEM 1.x that have been addressed to make
SPEM process models easier to enact and automate." [SPEM2, Section 6.1, Page 8]
10 http://modelseverywhere.wordpress.com/2010/11/17/bits-of-history-spem-and-uml-profiles/

214

C.1.1.3

Another
Enacting
is arguab
Engineer
ISO 2474

The ISO
endeavor
dynamic

In the Es
correspon
key discr

11 "Proce
enactmen
such as IB
execution
BPEL-ba
12 C. Gon
2008, ISB
13 ISO/IE
Standard

3 Suppo

main criticism
 SPEM proce

bly one of the
ring (SME) co
44 standard13.

24744 metam
r elements, a
semantics.

ssence langua
nd to similar
riminating fac

Captures and
practices and

Makes it poss

o “Pro
proje

o “Eva

o “Eva

ess described w
nt are: Mappin
BM Rational
n language an
ased workflow
nzalez-Perez a
BN 978-0-470

EC, "Software
disation (ISO),

Figure 1

ort for dyn

m of SPEM is
sses are typica
main require

ommunity12 h

model defines
nd uses soph

age we introd
classes define
tor of the Esse

d pinpoints the
methods in re

sible to formal

ovide guidance
ect”

aluate whether

aluate the curr

with the SPEM
ng the process
Portfolio Man

nd then executi
w engine (Sect
and B. Hender
0-03036-3.
Engineering –

, ISO/IEC 247

128 – A basi

amic sem

s the lack of s
ally done thro
ments that wi
as argued aga

a dual-layer m
histicated met

duce the abstr
ed in the stati
ence language

e value of the
eal life scenari

lly define the

e in terms of r

r a team is com

rent state of a

M 2.0 meta-mo
ses into Projec
nager or Micro
ing this repres
tion 16.2)." [S
rson-Sellers, "

– Metamodel
744, 15 Februa

ic card anato

mantics

support for en
ough mapping
ill require a re
ainst SPEM a

modeling appr
tamodelling c

ract superclas
ic semantics to
e, as compared

e language ba
ios

provide value

relevant activi

mpetent enou

project”

odel can be en
ct Plans and en
osoft Project (
sentation of th

SPEM2, Sectio
"Metamodellin

for Developm
ary 2007.

omy to visu

nactment built
11. Designing
edesign of the
s a baseline a

roach, with a c
constructs suc

ses my_Alph
o support dyn
d to other lang

sed on concre

e in terms of f

ities to perform

gh to execute

nacted in diffe
nacting these
(Section 16.1)
he processes u
on 16, Page 14
ng for Softwar

ment Methodo

ualize an elem

t in as a featu
a native dyna

e SPEM archi
and defined its

clear separatio
ch as Powert

ha, my_Work
namic semanti
guage approac

ete usage; inv

functions like:

m at a particu

a practice”

erent ways. Th
with project p
). Mapping the
using a workfl
47]
re Engineerin

ologies", Intern

 Es

ment

ure of the lang
amic semantic
itecture. The S
ts own specifi

on of methodo
types and Cl

kProduct and
ics. The dyna
ches. The dyn

volving practit

ular point in tim

he two most c
planning and e
e process to a
low flow engin

ng", John Wile

national Orga

ssence, Versio

guage architec
cs into the lang
Situational M
ication, namel

ology element
abjects to su

d my_Activity
amic semantic
namic semantic

tioners as the

me, for a parti

ommon ways
enactment sys
business flow

ne such as a

ey & Sons, Ltd

nization for

on 1.0

cture.
guage
ethod
ly the

ts and
upport

y that
cs is a
cs:

ey use

icular

of
stems
w or

d,

Essence, Version 1.0 215

o “Identify relevant objectives when taking the next step in a project”

o “Understand what practices are relevant to a project”

o and much more

 Is used as a built-in verification mechanism to ensure that all language elements are purposeful

 Is used to state requirements and drive the development of the language itself, to make sure it provides the right
values

 Serves as a formal proof that the language fulfills the features required by the FACESEM standard

C.1.1.4 Wider market appeal

One of the original rationale behind the SPEM 2.0 development was low uptake of SPEM 1.x14. We argue that this has
been the same situation for SPEM 2.0. The main tools supporting SPEM 2.0 are:

 IBM Rational Method Composer (RMC), http://www-01.ibm.com/software/awdtools/rmc/

 Eclipse Process Framework (EPF), http://www.eclipse.org/epf/

 IRIS Process Author (PA), http://www.osellus.com/IRIS-PA

Ideally for OMG to claim that SPEM 2.0 is a successful standard there should have been more market uptake. A new
simple and easy-to-use standard is needed that targets the practitioners foremost and the method engineer secondly.

If Essence is subsumed into a new version of SPEM (SPEM 3.0) it will never have mass appeal or impact. Our vision of
how Essence will be used, and the value it will bring, is substantially different from the way in which SPEM is currently
used. If Essence becomes part of a new SPEM standard, it will be hard to explain this in a way that makes sense, as it
will be saying "there is part of the new SPEM standard that is intended to be used in a completely different way from the
rest of SPEM".

C.1.2 What are your main differentiators?
The Essence language is based on a vision that gives it a clear differentiation from earlier work in defining meta-models
for software engineering processes. We discuss these differentiators under three headings:

 Underpinning Values

 Support for Enactment

 Ease of Learning and Use

All of these relate to the prime aims, that Essence provides value to practitioners, and that it is easy to understand, adopt
and use in the context of wide adoption.

C.1.2.1 Underpinning Values

A set of core values have driven the Essence work, and these have shaped and directed the Essence language
development. These values are:

a. What helps the least experienced developers before what helps the experts. The least experienced do not need to
bother with more advanced features of the Essence approach. This is motivated by the understanding that,
among the many millions of developers in the world, a high proportion are not interested in ‘method stuff’.

b. What helps the practitioners before what helps the process engineers. This is motivated by our conviction that
process engineers will have to stand on what practitioners’ need, and they will have to work from there – and

14 "SPEM 1.x saw low uptake. Since its issuance, few implementations have been released and it has not been recognized
by industry analysts who also failed to acknowledge its relevance to the methodology and process tools market. There
have been a number of low-profile or casual adopters of the specification as well as few commercial implementations. It
is suspected that ease of adoption has been an issue, and some of the SPEM 1.x semantics were ambiguous and hard to
understand by adopters and hence not used in their practices." [SPEM2, Section 6.1, Page 8]

216 Essence, Version 1.0

they do. “Practitioners are kings; process engineers are knights serving the kings”. Of course, we must support
the experts and process engineers as well, but not by having the practitioners to pay a price.

c. Intuitive, concrete graphical syntax before formal semantics. Now we need to speak in a language easily under-
standable by the millions of developers who care about quickly being able to read and use the language. Of
course, we have formally defined the semantics, but we have given extreme attention to syntax.

d. Method use before method definition. In the past similar initiatives have only paid interest to method definition,
namely how to capture methods. They have not focused on how to support the use of a method while actually
working in a software endeavor. Thus the methods became shelf-ware, not relevant for the developers running
software development. Instead, the Essence approach supports the developers so they themselves can take con-
trol of their method and allow the method to evolve as their endeavor progresses. Of course, we can also define
methods, but most importantly we have made methods useful while you actually work in real endeavors.

C.1.2.2 Support for Enactment

In the past, the primary aim of process description languages has been to achieve the necessary flexibility and expressive
power required by process engineers in authoring or describing processes. The focus of Essence is different, as the
primary focus is on delivering value to practitioners in undertaking a software development endeavror. I Essence this
value comes from:

 The Kernel, which provides the means to track and understand the state and health of an endeavor along all its
important dimensions. Practices and Methods are described in the Essence Language using the concepts of the
Kernal (Alphas and Activity Spaces) and relate back to them.

 The Dynamic Semantics, which allows practitioners to interact with an Essence model so that the model helps
guide and assess progress. The Dynamic Semantics is articulated in a formal language whose vocabulary is
provided by the abstract syntax of the Essence Language.

A critical success factor for Essence is that the form and scope of the process language is precisely aligned to both the
Kernel and the Dynamic Semantics, as shown in schematically Figure 129 – The Essence Language. The way these three
interact and support each other is unique to the Essence vision. In particular:

 At its heart, the abstract syntax has the set of features (Alphas, Alpha States and Activity Spaces) that are used to
define the Kernel. The full language uses and connects to these.

 The choice of features and relationships in the abstract syntax has been engineered to support a set of functions
(the Dynamic Syntax) that will provide comprehensive support to practitioners during a project, helping to plan
resourcing, guide the way forward and track the state and health of the project.

 The language is, and must be, kept lean. The scope of the abstract syntax is set by the need to align to the Kernel
and support the Dynamic Semantics. In particular it is not the function of the Essence language to describe the
process details of particular practices, as this is the realm of the practice process definitions which are outside of
Essence. This relieves Essence of the need to support complete expressive power in process definition. It is the
aim of achieving this full expressive power that makes conventional process definition languages large and
difficult to assimilate.

Essence, Version 1.0 217

Figure 129 – The Essence Language

C.1.2.3 Ease of Learning and Use

The ambition of penetrating the mass market of practitioners at all levels of experience and ability, across all sizes of
organization makes ease of learning understanding and use an imperative. These considerations have therefore been
paramount in thinking about how the language is structured and how methods and practices expressed in the language are
presented. Three aspects of the language are central to this.

1. The first is that users should be able to learn and adopt the language incrementally. To this end, the language is
structured in Layers. The idea of this is that users may explore, understand and adopt the language
incrementally as the layers represent self-contained and coherent subsets. This makes the learning curve
shallower and reduces barriers to adoption by making it possible to gain value without needing to make a high
investment.

2. The second is the emphasis put on a Graphical Syntax and related presentational mechanisms, such as cards.
The idea is to provide a medium whereby practitionerss can access material in the Essence model in a way that
easy to learn and remember, without the need to become fluent in any formal modeling language. The icons of
the graphical syntax provide cues which enable people to orient themselves in the material, and recognize and
interpret information easily. This accelerates adoption and use.

3. The third aspect of the languiuage is Views which provide a means of specifying selections and configurations
elements from a model tailored to the needs of different types of users. The specification of views is made
according to the job roles and preferences of users making it possible to customize the way material presented to
match a context, so that the presentation is focused and the user or not distracted or overwhelmed by detail that
is not relevant to the task or concern at hand.

While other process modeling formalisms have (or allow) similar constructs they tend to be positioned as optional extras,
ranking below the abstract syntax in importance. Because the vision for Essence has wide and easy adoption by
practitioners who do have any significant expertise in process modeling or formal modeling languages, these constructs
have primary rank in Essence. This has guided the development of the Essence abstract syntax, which has been
engineered to support and integrate with these constructs. The primary rank of these constructs is also a differentiator of
the Essence language.

218 Essence, Version 1.0

C.1.3 SPEM 2.0 metamodel reuse
As argued above the architecture of the Essence language is fundamentally different from the SPEM 2.0 architecture, so
reusing elements from SPEM would not be compatible. However, we do see some areas where there are some similar
concepts. In the table below we give an explanation on how the Essence concepts differs similar concepts in SPEM 2.0.

Table 67 – SPEM 2.0 metamodel reuse

Essence language
construct

Corresponding SPEM
construct

Reason (Discussion)

Activity n/a An activity defines one or more kinds of work items and gives
guidance on how to perform these.

Tasks (or work items as Essence prefers to call them) are not instances
of guidance or definitions provided by the method. Because of this we
prefer not to use the word Task in the method space.

Work Items are an Alpha and can be created with the help of the
Activity descriptions in the Method. It may take one or many work
items to complete the work defined by an Activity. Alternatively one
work item may complete the work defined by multiple Activities.

Work Around: Task Definition / TaskDescriptor – The closest
analogue of the Essence Activity in SPEM is the Task Definition /
Task Descriptor. This would require the ability to handle state based
completion criteria as well as output Alphas and Work Products.

Additional Notes: Activities in Essence are non-nestable, and only
support a predecessor (a finish-to-finish) relationship to other
activities. To document some practices some of the other similar
relationships (such as finish to start, start to start) may be required. All
project planning tools have breakdown structures. Many, if not most,
projects organize assigned tasks/work items in hierarchical structures.
The creation of these hierarchies should be considered as part of
enactment. Allowing instances of Activity Spaces and Activities as
well as Work Items would enable this.

Activity.approach n/a There are usually many ways to complete an activity and these often
change over time. By allowing the approaches to be defined
separately from the more goal-based activities we can produce a more
robust, extensible, tailorable and usable set of practices.

Work Around: Document Approaches as (Activity) Guidance:
Today in SPEM we do this by putting approaches into guidelines and
attaching them to a task or other kinds of method elements. There are
some cases where a task has a specific series of steps - there are no
alternative approaches. Then there is the case where there are no steps
- there are different approaches, and the practitioner can choose the
approach.

Note: There are many other guidelines that could be attached to an
Activity such as staffing, timing, tool mentors, transformation
algorithms and other hints and tips.

ActivityAssociation n/a SPEM does not have separate relationship elements. Having a
separate activity manifest gives the flexibility to associate an activity
with different activity spaces.

Essence, Version 1.0 219

Work Around: Use Contributing Elements: SPEM has a
workaround, however, which is to put optional relationships in
contributing elements and group them in packages.

ActivitySpace n/a Activity Spaces are placeholders for activities, which are to be added
by the practices. More than just empty slots Activity Spaces have
clearly defined results and can be enacted directly when no
appropriate Activities have been added.

Work Around: Use SPEM Activities or UMF Process Slots

In SPEM an activity is a breakdown element which supports the
nesting and logical grouping of related process elements such as
descriptor and sub-activities, thus forming breakdown structures.
However, they are not useable on their own.

Alternatively UMF extends SPEM with the concept of Process Slot.
An activity space also defines a set of inputs and outputs, so it is more
than just a UMF process slot.

Alpha n/a Alphas are a completely new concept that doesn’t exist in SPEM.
They are not a type of Work Product, they are things described by the
Work products. They are not simply a Work Product Slot as they can
be used without the addition if any Work products.

Work Around: Treat as a special kind of Work Product or Work
Product Slot

SPEM Work Products can have state machines and so can mimic
Alphas. An Alpha has different semantics to a Work Product, so they
are not quite equivalent.

UMF extends SPEM with the concept of Work Product Slot. An alpha
has more semantics than work product slot, so they are not quite
equivalent.

WorkProductManifest n/a SPEM does not have separate relationship elements. Having a
separate alpha manifest gives the flexibility to associate an alpha with
different work products.

Work Around: Use Contributing Elements: SPEM has a
workaround, however, which is to put optional relationships in
contributing elements and group them in packages.

Checkpoint No equivalent in SPEM

Competency No equivalent in SPEM.

CompetencyLevel n/a No equivalent in SPEM.

Competency level is a useful concept. We may define some standard
competency levels to differentiate between familiar with a subject
area, knowledgeable of the subject area, applied the subject area, and
master (able to teach others).

CompletionCriterion n/a Not in SPEM/UMF.

Kernel n/a No equivalent in SPEM.

220 Essence, Version 1.0

Library MethodLibrary Essence and SPEM 2.0 are conceptually aligned.

Method MethodConfiguration Method configuration and method appear to be synonyms. Method
configuration is a better term for one who is tailoring. Method is a
better term for one who is using a configuration.

Pattern n/a An arrangement of the other method elements to define additional less
constrained guidance such as Milestones, Planning Patterns, Team
Structures, Team Roles, Job Descriptions, Measurements etc.

Work Around: Model as type of guidance

Practice Practice The Practice concept in SPEM is only a specific type of Guidance.
The concept of Practice has been extended in UMF.

WorkProduct WorkProductDefinition Essence and SPEM 2.0 are conceptually aligned.

C.2 Overview of SPEM 2.0 features
This section provides an overview of SPEM 2.0 features.

Table 68 – SPEM 2.0 features

SPEM 2.0 language construct Enumeration literal/association
stereotype & SPEM 2.0 base extension

Description (single sentence)

Activity An Activity is a Work Breakdown
Element and Work Definition that defines
basic units of work within a Process as
well as a Process itself.

NestedBreakdownElement This association represents breakdown
structure nesting. It defines an n-level
hierarchy of Activities grouping together
other Breakdown Elements such as other
Activities, Milestones, etc.

Suppressed The suppressed association allows hiding
any Breakdown Element from the
interpretation of a process structure.

ActivityKind Activity Kinds provides the capability for
a process engineer to define life-cycle
models using the terminology they are
used to.

Phase Phase represents a significant period in a
project, ending with major management
checkpoint, milestone, or set of
Deliverables.

Iteration Iteration groups a set of nested Activities
that are repeated more than once.

Essence, Version 1.0 221

Process A Process is a special Activity that
describes a structure for particular types
of development projects or parts of them.

DeliveryProcess A Delivery Process is a special Process
describing a complete and integrated
approach for performing a specific
project type.

ProcessPattern A Process Pattern is a special Process that
describes a reusable cluster of Activities
in a general process area that provides a
consistent development approach to
common problems.

ProcessPlanningTemplate A Process Planning Template is a special
Process that is prepared for instantiation
by a project planning tool.

ActivityUseKind This enumeration defines the nature of
the reuse for an Activity that relates to
exactly one other Activity via the used
Activity association.

UsedActivity (extension) Extends provides a mechanism for
dynamically reusing Activity
substructures (elements contained via the
nested Breakdown Element composition)
in other Activities.

UsedActivity (localContribution) Local Contribution defines a mechanism
for defining specific local additions (or
contributions) to breakdown elements
inherited via the extension Activity Use
Kind within the context of the reusing
Activity.

UsedActivity (localReplace) Local Replace defines a mechanism for
defining local replacements to specific
breakdown elements inherited via the
Extension Activity Use Kind in the
context of the reusing Activity.

BreakdownElement Breakdown Element is an abstract
generalization for any type of Process
Element that is part of a breakdown
structure.

Category A Category is a Describable Element
used to categorize, i.e., group any number
of Describable Elements of any subtype
based on user-defined criteria.

Category (View) "View" is not explicitly called out as a
type in SPEM 2.0, but is mentioned as a

222 Essence, Version 1.0

kind of category that can be used as
views / navigation structures.

CategoryKind Category Kinds are a flexible way of
defining different groupings for Content
Categories.

Discipline A Discipline is a categorization of work
(i.e., Tasks for Method Content), based
upon similarity of concerns and
cooperation of work effort.

RoleSet A Role Set organizes Roles into
categories.

Domain Domain is a refineable hierarchy
grouping related work products.

Tool Category A Tool Category is a container/aggregate
for Tool Mentors.

CompositeRole A Composite Role is a special Role Use
that relates to more than one Role
Definition.

AggregatedRole This association lists all the Roles
Definitions represented by the Composite
Role.

DescribableElement Describable Element is an Extensible
Element that represents an abstract
generalization for all elements in SPEM
2.0 that can be documented with textual
descriptions.

ExtensibleElement Extensible Element is an abstract
generalization that represents any SPEM
2.0 class for which it is possible to assign
a Kind to its instances expressing a user-
defined qualification.

Guidance Guidance is a Describable Element that
provides additional information related to
Describable Elements.

GuidanceKind Allows to define commonly used
guidance kinds.

Checklist A Checklist is a specific type of guidance
that identifies a series of items that need
to be completed or verified.

Concept A Concept is a specific type of guidance
that outlines key ideas associated with
basic principles underlying the referenced

Essence, Version 1.0 223

item.

Estimate An Estimate is a specific type of
Guidance that provides sizing measures,
or standards for sizing the work effort
associated with performing a particular
piece of work and instructions for their
successful use.

EstimationConsideration Estimation Considerations qualify the
usage and application of estimation
metrics in the development of an actual
estimate.

EstimationMetric Estimation Metric describes a metric or
measure that is associated with an
element and which is used to calculate
the size of the work effort as well as a
range of potential labor.

Example An Example is a specific type of
Guidance that represents a typical,
partially completed, sample instance of
one or more work products or scenario-
like description of how Task may be
performed.

Guideline A Guideline is a specific type of guidance
that provides additional detail on how to
perform a particular task or grouping of
tasks (e.g., grouped together as
activities), or that provides additional
detail, rules, and recommendations on
work products and their properties.

Practice A Practice represents a proven way or
strategy of doing work to achieve a goal
that has a positive impact on work
product or process quality.

Report A Report is a predefined template of a
result that is generated on the basis of
other work products as an output from
some form of tool automation.

ReusableAsset A Reusable Asset provides a solution to a
problem for a given context.

Roadmap A Roadmap is a special Guidance Kind
that is only related to Activities.

SupportingMaterial Supporting Materials is a catch-all for
other types of guidance not specifically
defined elsewhere.

224 Essence, Version 1.0

Template A Template is a specific type of guidance
that provides for a work product a
predefined table of contents, sections,
packages, and/or headings, a standardized
format, as well as descriptions how the
sections and packages are supposed to be
used and completed.

TermDefinition Term Definitions define concepts and are
used to build up the Glossary.

MethodConfiguration A Method Configuration is a collection of
selected Method Plugins, as well as
subsets of Method Content Packages and
Process Packages of respective Method
Plugins.

BaseConfiguration The definition of a configuration can be
based on the definitions of other
configurations.

PackageSelection A selection of packages to be included in
the configuration.

MethodContentElement Method Content Element is an abstract
Describable Element that represents an
abstract generalization for all Method
Content Elements in SPEM 2.0.

MethodContentPackage A Method Content Package is a Method
Content Packageable Element and
Package that contains Method Content
Elements only.

MethodLibrary A Method Library is a physical container
for Method Plugins and Method
Configuration definitions.

MethodPlugin A Method Plugin is a Package that
represents a physical container for
Content and Process Packages.

BasePlugin This association defines that Method
Plugins could extend many other Method
Plugins.

Metric A Metric is a special Describable
Element that contains one or more
constraints that provide measurements for
any Describable Element.

Milestone A Milestone is a Work Breakdown
Element that represents a significant
event for a development project.

Essence, Version 1.0 225

RequiredResults This association links the Work Product
Uses instances to a Milestone instance
that need to be produced for that
Milestone.

OptionalityKind This enumeration provides the values for
the Task Definition Parameter attribute
optionality.

OptionalityMandatory It is mandatory to provide the Work
Product Definition specified in this
parameter as input or to provide an
instance of the Work Product Definition
as output respectively.

OptionalityOptional It is optional to provide the Work Product
Definition specified in this parameter as
input or to provide an instance of the
Work Product Definition as output
respectively.

Performer A Process Performer is a Breakdown
Element and Work Definition Performer
that represents a relationship between
Activity instances and Role Use
instances.

Planning Data Planning Data is a Process Element that
adds planning data to Breakdown
Elements when it is used for generating
project plans from a process.

PlannedElement The Planned Element stereotype can be
used as a superclass for other stereotypes
that need to store planning data such as
Activity or Task Use.

ProcessComponent A Process Component is a special
Process Package that applies the
principles of encapsulation.

WorkProductPort This association defines the ports
required or provided by the Process
Component.

ProcessComponentUse A Process Component Use represents a
Process Component application in any
other Process defined by a breakdown
structure.

ProcessElement Process Elements is an Extensible
Element that represents abstract
generalization for all elements that are
part of a SPEM 2.0 Process.

226 Essence, Version 1.0

ProcessPackage Derived from the UML 2 package with
additional constraints that enforce the
physical separation of method content
and process definitions.

Qualification Qualification is a Method Content
Element that documents zero or more
required qualifications, skills, or
competencies for Role and/or Task
Definitions.

ResponsibilityAssignment A Default Responsibility Assignment is a
Method Content Element that represents
a relationship between instances of Role
Definition and Work Product Definition.

RoleDefinition A Role Definition is a Method Content
Element that defines a set of related
skills, competencies, and responsibilities.

RoleUse A Role Use represents a Role in the
context of one specific Activity.

Section A Section is a special Class that
represents a structural subsection of a
Content Description’s mainDescription
attribute. It is used for large scale
documentation of Describable Elements
organized into sections, as well as to
flexibly add new Sections to Describable
Elements using contribution variability.

Step A Step is a Section and Work Definition
that is used to organize a Task
Definition’s Content Description into
parts or subunits of work.

TaskDefinition A Task Definition is a Method Content
Element and a Work Definition that
defines work being performed by Roles
Definition instances.

TaskUse A Task Use is a Method Content Use and
Work Breakdown Element that represents
a proxy for a Task Definition in the
context of one specific Activity.

MethodContentTrace This association represents the reference
from the Method Content Use to the
Method Content Element it refers to.

TeamProfile A Team Profile is a Breakdown Element
that groups Role Uses or Composite
Roles defining a nested hierarchy of

Essence, Version 1.0 227

teams and team members.

ToolDefinition A Tool Definition is a special Method
Content Element that can be used to
specify a tool’s participation in a Task
Definition.

VariabilityElement Variability Element is an abstract class
derived from Classifier that provides
capabilities for content variation and
extension to a specific list of SPEM 2.0
classes.

VariabilitySpecialization This stereotype is abstract and intended
to serve as the base for the three concrete
stereotypes defined for Variability Type.

VariabilityType Variability Type is an Enumeration used
for values for instances of Variability
Element’s attribute variabilityType.

VariabilityContributes Contributes provides a way for instances
of Variability Elements to contribute their
properties into their base Variability
Element without directly altering any of
its existing properties, i.e., in an additive
fashion.

VariabilityExtendsReplaces Extends-replaces combines the effects of
extends and replace variability into one
new variability type.

VariabilityExtends Extension allows Method Plugins to
easily reuse elements from a Base Plugin
by providing a kind of inheritance for the
special Variability Element.

VariabilityReplaces Replaces provides a way for Variability
Elements to define a replacement of a
base Variability Element without directly
changing any of its existing properties.

WorkBreakdownElement A Work Breakdown Element is a special
Breakdown Element that provides
specific properties for Breakdown
Elements that represent work (see Figure
9.11).

WorkDefiniton Work Definition is an abstract Classifier
that generalizes all definitions of work
within SPEM 2.0.

WorkDefinitionParameter A Work Definition Parameter is an
abstract generalization for Process
Elements that represent parameter for

228 Essence, Version 1.0

Work Definitions.

ParameterIn This attribute represents the kind of the
input as specified by the enumeration
Parameter Direction Kind.

ParameterInOut This attribute represents the kind of the
input as specified by the enumeration
Parameter Direction Kind.

ParameterOut This attribute represents the kind of the
input as specified by the enumeration
Parameter Direction Kind.

WorkProductDefinition Work Product Definition is Method
Content Element that is used, modified,
and produced by Task Definitions.

WorkProductKind Allows to define commonly used work
product kinds.

Outcome Outcome Definition is a Work Product
Definition that provides a description and
definition for non-tangible work
products.

Deliverable A Deliverable Definition is a Work
Product Definition that provides a
description and definition for packaging
other Work Products, and may be
delivered to an internal or external party.

Artifcat Artifact Definition is a Work Product
Definition that provides a description and
definition for tangible work product
types.

WorkProductRelationship A Work Product Definition Relationship
expresses a general relationship among
Work Products Definitions.

WorkProductRelationshipKind Work Product Relationship Kinds define
relationships among work products.

Composition ‘composition’ expressing that a work
product use instance of an instance is part
of another work product instance of an
instance.

Aggregation ‘aggregation’ indicating that a Work
Product Use is used with another Work
Product Use.

ImpactedBy ‘impacted by’ indicating that a work
product use impacts another work

Essence, Version 1.0 229

product use.

WorkProductUse A Work Product Use represents a Work
Product Definition in the context of one
specific Activity. Every breakdown
structure can define different
relationships of Work Product Uses to
Task Uses and Role Uses.

WorkSequence Work Sequence is a Breakdown Element
that represents a relationship between two
Work Breakdown Elements in which one
Work Breakdown Elements depends on
the start or finish of another Work
Breakdown Elements in order to begin or
end.

WorkSequenceKind Work Sequence represents a relationship
between two Work Breakdown Elements
in which one Work Breakdown Element
(referred to as (B) below) depends on the
start or finish of another Work
Breakdown Element (referred to as (A)
below) in order to begin or end.

finishToStart Work Breakdown Element (B) cannot
start until Work Breakdown Element (A)
finishes.

finishToFinish Breakdown Element (B) cannot finish
until Work Breakdown Element (A)
finishes.

startToStart Breakdown Element (B) cannot start until
Work Breakdown Element (A) starts.

startToFinish Breakdown Element (B) cannot finish
until Work Breakdown Element (A)
starts.

C.3 RMC/EPF extensions to SPEM 2.0
Rational Method Composer (RMC) and Eclipse Process Framework (EPF) are compliant with the SPEM 2.0
specification from 2008. RMC and EPF have both evolved and now contains some new useful language features to
support practice composition that are not part of the SPEM 2.0 specification, but they can be seen as proposed extensions
to SPEM 2.0.

 The main difference between UMF and SPEM 2.0 is the introduction of a “kernel” to support a practices
framework.

 This kernel is defined mainly with SPEM 2.0 constructs, but a few extensions to the meta-model were needed
for practice composition to work.

230 Essence, Version 1.0

C.3.1 Extensions to SPEM 2.0 to support Practice Composition
Table 69 – SPEM 2.0 features

SPEM 2.0 extension Description

Work Product Slot These are similar to Alphas, except that there is no state information associated with
them. They are used to decouple tasks – so a task can take “requirements” as an input,
without specifying whether the requirements are “use cases”, “user stories” or
something else. This is implemented in RMC as a flag on a work product – marking it
as a “slot”. A work product can “fulfil” a slot – this is a new relationship between
work products.

Process Slot This is similar to activity space. It is used to create a WBS that is independent of the
selected practices. EPF does not leverage this, however IBM internal methods make
extensive use of process slots.

Namespace This is implemented as a “.” notation in naming plug-ins. This allows plug-ins to be
grouped by context, type, and practice.

Practice (redefined) It now is like a special kind of custom category

 it groups elements (including other practices)

 has standard attributes like “purpose”

 has some unique publishing characteristics to make it easy to browse

o roadmaps, then concepts, work products, tasks, guidance.

Supporting elements Practices often share elements, such as work products. Shared elements are published
only if used. To mark an element as “publish only if used”, it is placed in a plug-in or
packaged marked as “supporting”.

C.3.2 UMF Kernel
The UMF kernel is built with the standard SPEM 2.0 language with the above extensions. The UMF kernel consists of:

 A standard set of work product slots

 Naming conventions for organizing plug-ins, including:

o Plug-in category – “core”, “practice”, “process” and “publish” to reflect different kinds of method
plug-ins

o “context”- a top level prefix to organize content into the major contexts of “technical”, “management”,
“business” and “general”)

o Suffixes to indicate whether the plug-in contains assignments only, or contains content owned by a
specific company, such as “-IBM”

 Authoring guidelines

 A replaceable default set of roles and categories (you can use the default, or substitute with your own set)

Essence,

This anne

D.1
This sect

D.1.1

The ISO
domain, a

Since me
introduce
the defini

The ISO
Powertyp

, Version 1.0

A

ex discusses a

Align
tion describes

Differ

Figure

O 24744 uses
and uses meta

Powertypes a

Clabjects (ins

etamodelling
es a set of ins
ition of the lan

24744 examp
pe (visualized

Annex D

alignment with

nment w
an approach t

rent meta

130 – Work

a dual-layer
amodelling co

are used to rela

stances) are us

constructs su
tance attribute
nguage conce

ple is shown
d as a dotted li

D: A

h ISO 24744 w

with ISO
to align the Es

amodel a

kProduct exa

r metamodel
onstructs such

ate (language)

sed to endow p

uch as Powert
es through the

ept WorkProdu

on the left sid
ine with a circ

Alignme
(Informa

which the init

O 24744
ssence specifi

architect

ample alignm

architecture,
as Powertype

) concepts in t

properties at e

types and Cla
e use of Dom
uct as defined

de. Note that
cle endpoint).

ent wit
ative)

ial SEMDM (

ication with th

ture

ment betwe

separating be
es and Clabjec

the Method(ol

enactment.

abjects are no
main classes. F

in ISO 24744

WorkProduct
Both these el

th ISO 2

(OMG Docum

he ISO 24744

en ISO 2474

etween an En
cts to relate ele

logy) and End

ot supported b
Figure 130 sho
4 with the appr

t and WorkPro
lements are pa

24744

ment ad/2011-0

specification.

44 and Esse

ndeavour and
ements in thes

deavor domain

by MOF the
ows an examp

proach in Esse

roductKind are
art of the ISO

06-26) is base

ence

d a Method(o
se two domain

ns.

Essence appr
ple of how to
nce.

e related throu
O 24744 metam

 231

ed on.

ology)
ns.

roach
align

ugh a
model

232 Essence, Version 1.0

that can be extended to model your method(ology). The WorkProduct class is extended through a generalization and the
WorkProductKind is instantiated. The resulting extension is called a Clabject since it has both a class facet (i.e., the
ProductBacklog subclass of WorkProduct) and an object instance (i.e., the unnamed :WorkProductKind).

The MOF layered architecture does not allow generalizations across metalayers (i.e., M2 and M1), so it is typically
assumed that any instance attributes are dealt with by the tool vendor that is to implement the specification. In Essence
we explicitly define Domain classes, such as my_WorkProduct, that contains the necessary instance properties (defined as
EndeavourProperty instances from the metamodel), that is to be endowed at enactment. As can be seen in Figure 130 by
adding the ISO 24744 instance properties to the class my_WorkProduct we can support the construct WorkProduct as
defined in the ISO 24744 specification.

In fact, if the MOF architecture had supported Powertypes and Clabjects, this would be the preferred way of defining the
Domain classes and relate them to the metamodel classes using the Powertype relationship. Based on this it should be
possible to define a mapping between the dual-layer metamodel architecture of ISO 24744 and the MOF architecture
used by Essence.

Adding properties on domain classes thus represents one way to align ISO 24744 and Essence. So, why are not the ISO
24744 properties captured? The objective of Essence 1.0 is to define the smallest language possible, and unless we can
define functions that operate on these properties that tool providers are required to support, we have decided to omit
them. However, tool vendors are free to add their own properties and functions in order to support richer enactment
capabilities that make use of additional properties.

D.1.2 Different writing system
Another difference between ISO 24744 and Essence is the notion of what can be called a language. ISO 24744 defines all
its language constructs as part of the metamodel, whereas in Essence the metamodel can be viewed as a writing system
and the language (exposed to the users) is actually a combination of the language constructs defined in the metamodel
and the standardized model elements (defined at the MOF M1 layer) that the Kernel consist of. In a sense this is also
similar to the dual-layer formalism of ISO 24744 and its extension mechanisms. In Essence the preferred way is to keep
the set of language constructs in the metamodel to a minimum and extend elements of the Kernel instead.

In particular one essential and generic construct of the writing system (i.e. metamodel) is the notion of an Alpha. The
Alpha can be viewed as important as the notion of Class in an Object-Oriented system as it can be used to express many
different things in the Software Engineering Method domain, e.g., a Task, a Requirement, a Requirements Item, a Team, a
Team Member, etc., that can be monitored and progressed through states changes. These set of named and defined Alphas
becomes the "language" that the practitioners of Software Engineering will use. The fact that they are of type or instances
of Alphas are not important, but how you apply and use them are. Generic constructs such as the Alpha means that
writing system can be kept to a minimum since metamodel classes for Task, Requirement, Team, etc., do not need to be
introduced in the metamodel layer.

Figure 131 shows an example of how to align the definition of the language concept Task as defined in ISO 24744 with
the approach in Essence. As can be seen, the approach is basically the same as shown in Figure 130 for WorkProduct,
with a few differences. The Essence Kernel defines the top-level Alpha Work and a sub-ordinate Alpha Task in the
optional Kernel Extension. In Figure 131 we introduce an ISO 24744 compliant Task instead of the one proposed in the
optional Kernel extension. As can be seen this now contains the properties from the ISO 24744 definition of Task. If we
want to use the instanceName property introduced by the Essence Alpha we would have to create a TaskExtension in the
ISO 24744 approach containing this property.

Essence,

D.1.3
Comparin
method a
Endeavou
or langua

The nam
different

The ISO
defined a
concepts
practices
terms suc
practices
in the Es
24744 lan

, Version 1.0

Fig

Defin
ng the ISO 24
and the endea
ur and Metho
age as underst

Some of the I

o Work

o Work

Some of the I
Section D.1.2

o Task

ming difference
use of naming

24744 specif
as part of the
are that there
. Instead The
ch as Milesto
. For those co
sence languag
nguage conce

gure 131 – T

ition of a
4744 and the
avour: which
d(ology) dom

tood in the OM

ISO 24744 con

kProductKind

kProduct map

ISO 24744 co
2.

k can be mapp

es related to W
g conventions

fication also d
e Essence La
e is no univers

Essence lang
one or Role ac
oncepts in the
ge or defined
pts.

Task exampl

an ISO 24
Essence appr
in the ISO 24

mains, and in th
MG context) a

ncepts map to

d maps to Work

ps to my_Work

oncepts map to

ed to Task (wh

WorkProduct,
s.

defines a set o
anguage. The
sal agreement
guage introduc
ccording to sp
ISO 24744 sp
as an Alpha th

le alignmen

4744 Ker
roach shows t
4744 approac
the Essence ap
and the Kernel

o concepts in t

rkProduct (lan

kProduct (abst

o elements in

hich is an Alp

i.e., use of K

of language co
reason that

t of the definit
ces the generi
pecific practic
pecification th
he Pattern con

t between IS

rnel exte
that both are
h is supported
pproach is sep
l providing the

the Essence La

nguage constru

tract super cla

the Kernel (o

pha in the opti

Kind and my_,

oncepts such a
Essence does
tion of such te
ic construct P
ces or Kernel
hat cannot be
nstruct can be

SO 24744 an

ension
built one a si
d by a dual-m
parated into a
e common sta

anguage as ex

uct in Essence

ass in Essence)

or optional Ke

onal Kernel ex

, between ISO

as Milestone,
s not define t
erms and they
attern that can
extensions th
mapped to a c

e used to defin

nd Essence

imilar founda
modeling appr

metamodel (i
arting ground.

xplained in Se

e)

e)

ernel extensio

xtension)

O 24744 and E

Producer, Ro
these as stan

y are used diff
an be used to
hat applies to
corresponding
ne a library of

tion separatin
roach with ex
i.e., writing sy

ection D.1.1.

ns) as explain

Essence are d

le, etc. that ar
ndardized lang
ferently in diff
define and ex
a set of cons

g language ele
f supplementa

 233

ng the
xplicit
ystem

ned in

due to

re not
guage
ferent
xpress
istent

ement
al ISO

234 Essence, Version 1.0

Based on our analysis it should be possible to align the ISO 24744 and Essence approach using the techniques illustrated
above. We advise that the SEMDM team can define an ISO 24744 Kernel extension similar to the KUALI-BEH Kernel
extension.

Essence, Version 1.0 235

D.2 Overview of ISO 24744 features
This section provides an overview of ISO 24744 features.

Table 70 – ISO 24744 features

ISO 24744 language construct Description (single sentence)

Action An action is a usage event performed by a task upon a work product.

ActionKind An action kind is a specific kind of action, characterized by a given cause (a task
kind), a given subject (a work product kind) and a particular type of usage.

Build A build is a stage with duration for which the major objective is the delivery of an
incremented version of an already existing set of work products.

BuildKind A build kind is a specific kind of build, characterized by the type of result that it aims
to produce.

CompositeWorkProduct A composite work product is a work product composed of other work products.

CompositeWorkProductKind A composite work product kind is a specific kind of composite work product,
characterized by the kinds of work products that are part of it.

Conglomerate A conglomerate is a collection of related methodology elements that can be reused in
different methodological contexts.

Constraint A constraint is a condition that holds or must hold at certain point in time.

Document A document is a durable depiction of a fragment of reality.

DocumentKind A document kind is a specific kind of document, characterized by its structure, type
of content and purpose.

Element An element is an entity of interest to the metamodel. Element is an abstract class,
specialized into MethodologyElement and EndeavourElement.

EndeavourElement An endeavour element is an element that belongs in the endeavour domain.

Guideline A guideline is an indication of how a set of methodology elements can be used during
enactment.

HardwareItem A hardware item is a piece of hardware of interest to the endeavour.

HardwareItemKind A hardware item kind is a specific kind of hardware item, characterized by its
mechanical and electronic characteristics, requirements and features.

InstantaneousStage An instantaneous stage is a managed point in time within an endeavour.

InstantaneousStageKind An instantaneous stage kind is a specific kind of instantaneous stage, characterized by
the kind of event that it represents.

Language A language is a structure of model unit kinds that focus on a particular modelling
perspective.

236 Essence, Version 1.0

MethodologyElement A methodology element is an element that belongs in the methodology domain.

Milestone A milestone is an instantaneous stage that marks some significant event in the
endeavour.

MilestoneKind A milestone kind is a specific kind of milestone, characterized by its specific purpose
and kind of event that it signifies.

Model A model is an abstract representation of some subject that acts as the subject’s
surrogate for some well defined purpose.

ModelKind A model kind is a specific kind of model, characterized by its focus, purpose and
level of abstraction.

ModelUnit A model unit is an atomic component of a model, which represents a cohesive
fragment of information in the subject being modelled.

ModelUnitKind A model unit kind is a specific kind of model unit, characterized by the nature of the
information it represents and the intention of using such a representation.

ModelUnitUsage A model unit usage is a specific usage of a given model unit by a given model.

ModelUnitUsageKind A model unit usage kind is a specific kind of model unit usage, characterized by the
nature of the use that a given model kind makes of a given model unit kind.

Notation A notation is a concrete syntax, usually graphical, that can be used to depict models
created with certain languages.

Outcome An outcome is an observable result of the successful performance of any work unit of
a given kind.

Person A person is an individual human being involved in a development effort.

Phase A phase is a stage with duration for which the objective is the transition between
cognitive frameworks.

PhaseKind A phase kind is a specific kind of phase, characterized by the abstraction level and
formality of the result that it aims to produce.

PostCondition A postcondition is a constraint that is guaranteed to be satisfied after an action of the
associated kind is performed.

PreCondition A precondition is a constraint that must be satisfied before an action of the associated
kind can be performed.

Process A process is a large-grained work unit that operates within a given area of expertise.

ProcessKind A process kind is a specific kind of process, characterized by the area of expertise in
which it occurs.

Producer A producer is an agent that has the responsibility to execute work units.

ProducerKind A producer kind is a specific kind of producer, characterized by its area of expertise.

Essence, Version 1.0 237

Reference A reference is a specific linkage between a given methodology element and a given
source.

Resource A resource is a methodology element that is directly used at the endeavour level,
without an instantiation process.

Role A role is a collection of responsibilities that a producer can take.

RoleKind A role kind is a specific kind of role, characterized by the involved responsibilities.

SoftwareItem A software item is a piece of software of interest to the endeavour.

SoftwareItemKind A software item kind is a specific kind of software item, characterized by its scope,
requirements and features.

Source A source is a source of information, experience or best practices.

Stage A stage is a managed time frame within an endeavour.

StageKind A stage kind is a specific kind of stage, characterized by the abstraction level at which
it works on the endeavour and the result that it aims to produce.

StageWithDuration A stage with duration is a managed interval of time within an endeavour.

StageWithDurationKind A stage with duration kind is a specific kind of stage with duration, characterized by
the abstraction level at which it works on the endeavour and the result that it aims to
produce.

Task A task is a small-grained work unit that focuses on what must be done in order to
achieve a given purpose.

TaskKind A task kind is a specific kind of task, characterized by its purpose within the
endeavour.

TaskTechniqueMapping A task-technique mapping is a usage association between a given task and a given
technique.

TaskTechniqueMappingKind A task-technique mapping kind is a specific kind of task-technique mapping,
characterized by the mapped task kind and technique kind.

Team A team is an organized set of producers that collectively focus on common work
units.

TeamKind A team kind is a specific kind of team, characterized by its responsibilities.

Technique A technique is a small-grained work unit that focuses on how the given purpose may
be achieved.

TechniqueKind A technique kind is a specific kind of technique, characterized by its purpose within
the endeavour.

Template A template is a methodology element that is used at the endeavour level through an
instantiation process.

238 Essence, Version 1.0

TimeCycle A time cycle is a stage with duration for which the objective is the delivery of a final
product or service.

TimeCycleKind A time cycle kind is a specific kind of time cycle, characterized by the type of
outcomes that it aims to produce.

Tool A tool is an instrument that helps another producer to execute its responsibilities in an
automated way.

ToolKind A tool kind is a specific kind of tool, characterized by its features.

WorkPerformance A work performance is an assignment and responsibility association between a
particular producer and a particular work unit.

WorkPerformanceKind A work performance kind is a specific kind of work performance, characterized by
the purpose of the inherent assignment and responsibility association.

WorkProduct A work product is an artefact of interest for the endeavour.

WorkProductKind A work product kind is a specific kind of work product, characterized by the nature of
its contents and the intention behind its usage.

WorkUnit A work unit is a job performed, or intended to be performed, within an endeavour.

WorkUnitKind A work unit kind is a specific kind of work unit, characterized by its purpose within
the endeavour.

Essence, Version 1.0 239

Annex E: Practice Examples
(Informative)

This annex provides working examples to demonstrate the use of the Kernel and Language to describe practices.

E.1 Practices
This section contains illustrative examples of the following:

 Scrum

 User Story

 Multi-phase Waterfall

 Lifecycle examples

E.1.1 Scrum
This section illustrates the Essence approach by modeling the Scrum project management practice. The Scrum practice as
documented here is for illustrative purposes only and explores how the Scrum practice may be mapped to the Essence
Kernel and Language. It should not be interpreted as a definitive example of how Scrum should be represented. There
may be multiple ways for different communities to represent Scrum.

E.1.1.1 Practice

The following Scrum concepts were identified from the Scrum guide [Schwaber and Sutherland 2011]:

 Scrum team (roles)

o Product Owner

o Development Team (of developers)

o Scrum Master

 Scrum events

o The Sprint

o Sprint Planning Meeting

o Daily Scrum

o Sprint Review

o Sprint Retrospective

 Scrum artifacts

o Product Backlog

o Sprint Backlog

o Increment

240

Graphic

Textual

kernel

owns {

}

practi

owns {

cal syntax

syntax

 ESSENCE
"..."

alpha Wor
 "..
with stat
 sta

 }
}

alpha Tea
 "..
with stat
 sta

 }
}

ce Scrum:
"..."
with obje

ESSENCE k
alpha Spr
ESSENCE k
alpha Scr
workProdu
workProdu
workProdu
type Role

kernel:

rk:
.."
tes {
ate someSt

"..."

am:
."
tes {
ate someLe

"..."

ective "..

kernel.Wor
rint:
kernel.Tea
rumTeam:
uct Produc
uct Sprint
uct Increm
e: "..."

Figu

tate {

evel {

."

rk contain

am contain

ctBacklog:
tBacklog:
ment:

ure 132 – Sc

ns 1..N Sp

ns 1 Scrum

crum practic

print

mTeam

ce

 Es

ssence, Versioon 1.0

Essence,

}

E.1.1.2

E.1.1.2

We exten
may cove

Graphic

The Sprin
practice,

, Version 1.0

pattern <
pattern <
pattern <

2 Alphas

.1 Work

nd the Work a
er a number o

"The heart o
potentially re
effort. A new
2011]

cal syntax

nt has its own
whereas the W

Role> Pro
Role> Dev
Role> Scr

s

alpha for Scru
f sprints. Thu

of Scrum is a
leasable produ

w Sprint starts

n state graph.
Work state ma

oductOwner
velopmentT
rumMaster:

um. The Work
s we define a

a Sprint, a ti
uct Increment
immediately

Figure 13

Scrum comes
achine and its

r:
Team:

k alpha is typ
new sub-alph

ime-box of o
t is created. S
after the conc

33 – Sprint s

s with its own
associated ch

pically used fo
ha called Sprin

ne month or
prints have co
clusion of the

sub-alpha of

n specific set
eckpoints are

or the duration
nt.

less during
onsistent dura
e previous Spr

f Work

of rules that
more general

on of a develo

which a “Do
ations through
rint." [Schwab

should be def
l.

opment projec

one”, useable
hout a develop
ber and Suthe

fined as part o

 241

ct that

, and
pment
erland

of the

242

Graphic

Textual

alpha

cal syntax

syntax

Sprint:
"The hear
which a “
created.
A new Spr
Sprint. (

with stat
 sta

 }
 sta

 }
 sta

Fig

rt of Scru
“Done”, us
Sprints h
rint start
...contin

tes {
ate Planne

"The w
checks

}

ate Starte
"The w
checks

}

ate UnderC
"The w
produc
result
checks

gure 134 – T

um is a Sp
seable, an
have consi
ts immedia
nues...)"

ed {
work has b
s {
item c1 {
item c2 {
items to
item c3 {
functiona
the Sprin
item c4 {
item c5 {

ed {
work is pr
s {
item c1 {
Backlog"}

Control {
work is go
ctivity le
t."
s {
item c1 {

The states o

print, a t
nd potenti
istent dur
ately afte

been reque

{"Sprint P
{"Product
the Devel
{"Developm
ality into
nt"}
{"Scrum Te
{"Developm

roceeding.

{"Team is
}

oing well,
evels are

{"Daily Sc

of the Sprint

time-box o
ially rele
rations th
er the con

ested and

Planning M
Owner pre
lopment Te
ment Team
o a “Done”

eam crafts
ment Team

"

taking th

 risks ar
sufficien

crum optim

t sub-alpha

of one mon
easable pr
hroughout
nclusion o

planned."

Meeting is
esents ord
eam."}
decides h
” product

s a Sprint
defines a

heir work

re under c
nt to achi

mizes the

 Es

nth or les
roduct Inc
a develop
of the pre

"

s held."}
dered Prod

how it wil
Increment

t Goal."}
a Sprint B

items fro

control, a
ieve a sat

probabili

ssence, Versio

ss during
crement is
pment effo
evious

duct Backl

ll build t
t during

Backlog."}

om the Spr

and
tisfactory

ity that t

on 1.0

s
ort.

log

this

}

rint

y

the

Essence,

E.1.1.2

The Scru
that may
Developm

Graphic

Scrum m

, Version 1.0

 }
 sta

 }
 sta

 }
}

.2 Team

um practice rel
 be represente
ment Team, an

"The Scrum T
self-organizin
than being d
accomplish th
optimize flex

cal syntax

mandates that o

}

ate Conclu
"The w
checks

}

ate Closed
"All r
work h
checks

}

lates to the Te
ed by a sub-a
nd a Scrum M

Team consists
ng and cross-f
directed by o
he work witho
ibility, creativ

one sole perso

Developme
item c2 {
to explai
intends t
accomplis
in the re

uded {
work to pr
s {
item c1 {
stakehold
Sprint."}

d {
remaining
has been o
s {
item c1 {
the Sprin
item c2 {
Sprint Re
Meeting."

eam alpha. Th
alpha. Scrum d

Master.

s of a Product
functional. Se
thers outside

out depending
vity, and produ

Fig

on should take

ent Team w
{"Every da
in to the
to work to
sh the goa
emainder o

roduce the

{"During t
ders colla
}

housekeep
officially

{"A Sprint
nt."}
{"The Spri
eview and
"}

he Team alpha
defines a spec

t Owner, the D
elf-organizing
e the team. C
g on others not
uctivity." [Sch

gure 135 – S

e on the role o

will meet
ay, the De
Product O
ogether as
al and cre
of the Spr

e results

the Sprint
aborate ab

ping tasks
y closed."

t Review M

int Retros
prior to

refers to the i
cific Scrum T

Development T
g teams choos
Cross-function
t part of the te

hwaber and Su

Scrum Team

of a Product O

the Sprin
evelopment
Owner and
s a self-o
eate the a
rint."}

has been

t Review,
bout what

s have bee

Meeting is

spective o
the next

individuals wo
Team which co

Team, and a S
se how best to
nal teams hav
eam. The team
utherland 2011

Owner and ano

nt Goal."}
t Team sho
Scrum Mas
organizing
anticipate

concluded

the Scrum
was done

en complet

s held at

occurs aft
Sprint Pl

orking in the
onsists of a P

Scrum Master
o accomplish
ve all compe
m model in Sc
1]

other sole per

}
ould be ab
ster how i
g team to
ed increme

d."

m Team and
in the

ted and th

the end o

ter the
lanning

team, i.e. mem
Product Owne

r. Scrum Team
their work, r

etencies neede
crum is design

rson should tak

 243

ble
it

ent

d

he

of

mbers
er, the

ms are
rather
ed to
ned to

ke on

244

the role o
another a
would all
not all fo

Graphic

Textual

alpha

E.1.1.3

E.1.1.3

The Prod

of the Scrum
alternative wo
low us to easi

ollowing Scrum

cal syntax

syntax

ScrumTeam
"The Scru
Scrum Mas
organizin
being dir
competenc
part of t
flexibili

with stat

sta

}
}

3 Work P

.1 Produc

duct Backlog a

"The Product
source of req
Product Back

m Master. Thes
ould be to def
ier extend and
m.

Figure

m:
um Team co
ster. Scru
ng teams c
rected by
cies neede
the team.
ty, creat

tes {
ate Establ

"Scrum
checks

}

Products

ct Backlog

and Sprint Bac

t Backlog is a
quirements for
klog, including

se types of co
fine a specific
d scale the pra

e 136 – The

onsists of
um Teams a
choose how
others ou
ed to acco
The team
tivity, an

ished {
m Team is
s {
item c1 {
item c2 {
Team."}
item c3 {

cklog are asso

an ordered lis
r any changes
g its content, a

onstraints cou
c Scrum Team
actice to Scru

states of th

f a Produc
are self-o
w best to
utside the
omplish th
model in
nd product

establish

{"The Prod
{"Develope

{"The Scru

ociated with th

st of everythi
s to be made
availability, an

uld be added
m as a sub-alp
um of Scrums,

he Scrum Te

ct Owner,
organizing
accomplis
e team. Cr
he work wi
Scrum is
tivity. (.

hed."

duct Owner
ers are as

um Master

he Requireme

ing that migh
to the produc

nd ordering."

as checkpoint
pha. The intro
, including ma

eam sub-alp

the Devel
g and cros
sh their w
ross-funct
ithout dep
designed
..continu

r is assig
ssigned to

is assign

nts alpha.

t be needed i
ct. The Produ
[Schwaber an

 Es

ts on the Tea
oduction of a
anaging differ

pha

lopment Te
ss-functio
work, rath
tional tea
pending on
to optimi
ues...)"

gned."}
o the Deve

ned."}

in the produc
uct Owner is r
nd Sutherland

ssence, Versio

m alpha itsel
specific sub-

rent types of t

eam, and a
onal. Self
her than
ams have a
n others n
ize

elopment

t and is the s
responsible fo
2011]

on 1.0

f, but
alpha
teams

a
f-

all
not

single
or the

Essence,

Graphic

Textual

workPr

E.1.1.3

The Sprin

, Version 1.0

cal syntax

syntax

roduct Pro
"The Prod
in the pr
be made t
Backlog,
(...conti

with leve
 lev

 }
}

.2 Sprint

nt Backlog is

"The Sprint B
product Incre
about what f
[Schwaber an

oductBackl
duct Backl
roduct and
to the pro
including
nues...)"

els {
vel someLe

"..."

Backlog

associated wi

Backlog is the
ement and rea
functionality w
nd Sutherland

Figur

og:
og is an
d is the s
oduct. The
g its cont

evel {

ith the Sprint s

e set of Produ
alizing the Sp
will be in th
2011]

re 137 – Pro

ordered l
single sou
e Product
tent, avai

sub-alpha.

uct Backlog i
print Goal. Th
he next Increm

oduct Backlo

list of ev
urce of re
Owner is
ilability,

tems selected
he Sprint Back
ment and the

og

verything
equirement
responsib
 and orde

d for the Sprin
klog is a fore
work needed

that migh
ts for any
ble for th
ering.

nt plus a plan
ecast by the D
d to deliver t

ht be need
y changes
he Product

n for deliverin
Development
that functiona

 245

ded
to
t

ng the
Team
ality."

246

Graphic

Textual

workPr

E.1.1.3

The Incre

cal syntax

syntax

roduct Spr
"The Spri
Sprint pl
Sprint Go
what func
deliver t

with leve
 lev

 }
}

.3 Increm

ement is assoc

"The Increme
At the end of
meet the Scru
Owner decide

rintBacklo
nt Backlo
us a plan
oal. The S
ctionality
that funct

els {
vel someLe

"..."

ent

ciated with the

ent is the sum
f a Sprint, the
um Team’s De
es to actually r

Figu

og:
og is the
n for deli
Sprint Bac
y will be
tionality.

evel {

e Software Sy

m of all the Pro
e new Increm
efinition of “D
release it." [Sc

ure 138 – Sp

set of Pr
ivering th
cklog is a
in the ne
 (...cont

ystem alpha.

oduct Backlog
ment must be “
Done.” It must
chwaber and

print Backlog

roduct Bac
he product
a forecast
ext Increm
tinues...)

g items compl
“Done,” whic
t be in useabl
Sutherland 20

g

cklog item
t Incremen
t by the D
ment and t
"

leted during a
h means it m
e condition re

011]

 Es

ms selecte
nt and rea
Developmen
the work n

a Sprint and al
must be in use
egardless of w

ssence, Versio

ed for the
alizing th
nt Team ab
needed to

ll previous Sp
able condition

whether the Pr

on 1.0

e
he
bout

prints.
n and
oduct

Essence,

Graphic

Textual

workPr

E.1.1.4

The iden
iteration

, Version 1.0

cal syntax

syntax

roduct Inc
"The Incr
a Sprint
Increment
meet the
regardles
(...conti

with leve
 lev

 }
}

4 Activit

ntified Scrum
that we will m

Sprint Plannin

Daily Scrum

Sprint Review

Sprint Retrosp

crement:
rement is
and all p
t must be
Scrum Tea
ss of whet
nues...)"

els {
vel someLe

"..."

ties

events may b
map to a sub-a

ng Meeting

w

pective

Fi

the sum o
previous S
“Done,” w
am’s Defin
ther the P

evel {

be mapped to
alpha of Work

igure 139 –

of all the
Sprints. A
which mean
nition of
Product Ow

o correspondin
. This gives u

Increment

e Product
At the end
ns it must
“Done.” I
wner decid

ng activities.
s the followin

Backlog i
d of a Spr
t be in us
It must be
des to act

The concept
ng activities:

items comp
rint, the
seable con
e in useab
tually rel

of sprint how

pleted dur
new
ndition an
ble condit
lease it.

wever describ

 247

ring

nd
tion

bes an

248

Graphic

E.1.1.4

The Sprin

Graphic

E.1.1.4

The Daily

Graphic

E.1.1.4

The Sprin

cal Syntax

.1 Sprint

nt Planning M

"The work to
collaborative
one-month Sp
four-hour Spr

cal syntax

.2 Daily S

y Scrum is as

"The Daily S
create a plan
forecasting th

cal syntax

.3 Sprint

nt Review is a

"A Sprint Re

Planning M

Meeting is asso

o be performed
work of the

print. For shor
rint Planning M

Scrum

sociated with

Scrum is a 15
n for the nex
he work that co

Review

associated wit

eview is held

Figur

Meeting

ociated with th

d in the Sprin
entire Scrum
rter Sprints, th
Meetings." [S

Figure 14

the Track Pro

5-minute time
t 24 hours. T
ould be done b

Fig

th the Track Pr

at the end of

re 140 – Scr

he Prepare to d

nt is planned a
Team. The S

he event is pr
chwaber and

41 – Sprint P

ogress activity

e-boxed event
This is done
before the nex

gure 142 – D

rogress activit

f the Sprint to

rum activitie

do the Work a

at the Sprint P
print Planning

roportionately
Sutherland 20

Planning Me

y space.

for the Deve
by inspecting

xt one." [Schw

Daily Scrum

ty space.

o inspect the

es

activity space.

Planning Meet
g Meeting is
shorter. For e

011]

eeting

elopment Team
g the work s
waber and Suth

Increment an

 Es

.

eting. This pla
time-boxed to

example, two-

m to synchro
since the last
therland 2011]

nd adapt the P

ssence, Versio

an is created b
o eight hours
-week Sprints

onize activitie
Daily Scrum

]

Product Backl

on 1.0

by the
for a
 have

s and
m and

log if

Essence,

Graphic

E.1.1.4

The Sprin

Graphic

E.1.1.5

Roles can

E.1.1.5

Textual

type R

patter

E.1.1.5

Textual

type R

patter

, Version 1.0

needed. Durin
Sprint. Based
next things th
elicit feedbac

cal syntax

.4 Sprint

nt Retrospecti

"The Sprint
improvement
prior to the n
Proportionate

cal syntax

5 Roles

n be described

Product Own

Development

Scrum Master

.1 Produc

syntax

Role: "...

rn <Role>
"The Prod
and the w
across or

.2 Develo

syntax

Role: "...

rn <Role>
"The Deve

ng the Sprint
d on that and
hat could be d
k and foster c

Retrospect

ive is associat

Retrospective
ts to be enacte
next Sprint P

ely less time is

d as patterns:

er

t Team (of dev

r

ct Owner

"

ProductOw
duct Owner
work of th
rganizatio

opment Tea

"

Developme
elopment T

Review, the
any changes

done. This is a
collaboration."

Figu

tive

ted with the Su

e is an oppo
ed during the n
Planning Meet
s allocated for

Figure

velopers)

wner:
r is respo
he Develop
ons, Scrum

am

entTeam:
Team consi

Scrum Team
to the Produc

an informal me
" [Schwaber a

ure 143 – Sp

upport the Tea

ortunity for th
next Sprint. T
ting. This is
r shorter Sprin

144 – Sprin

onsible fo
pment Team
m Teams, a

ists of pr

and stakehol
ct Backlog du
eeting, and th

and Sutherland

print Review

am activity sp

he Scrum Te
The Sprint Retr

a three-hour
nts." [Schwabe

nt Retrospec

or maximiz
m. How thi
and indivi

rofessiona

ders collabora
uring the Spri
e presentation

d 2011]

w

ace.

eam to inspec
rospective occ
time-boxed m

er and Sutherl

ctive

zing the v
is is done
iduals. (.

als who do

ate about wha
int, attendees
n of the Increm

ct itself and
curs after the
meeting for o
land 2011]

value of t
e may vary
...continu

o the work

at was done i
collaborate o

ment is intend

create a pla
Sprint Review

one-month Sp

the produc
y widely
ues...)"

k of

 249

in the
on the
ded to

n for
w and
prints.

ct

250

E.1.1.5

Textual

type R

patter

E.1.2

E.1.2.1

Graphic

Textual

kernel

owns {

}

practi

owns {

}

deliverin
of each S
(...conti

.3 Scrum

syntax

Role: "...

rn <Role>
"The Scru
enacted.
Scrum the
for the S
understan
which are
maximize

User

1 Practic

cal syntax

syntax

 ESSENCE
"..."

alpha Req
"...."
with stat
 sta

 }
}

ce UserSt
"..."
with obje

ESSENCE k
workProdu

ng a poten
Sprint. On
nues...)"

Master

"

ScrumMast
um Master
Scrum Mas
eory, prac
Scrum Team
nd which o
en’t. The
the value

Story

ce

kernel:

quirements

tes {
ate someSt

"..."

tory:

ective "..

kernel.Req
uct UserSt

ntially re
nly member

ter:
is respon
sters do t
ctices, an
m. The Scr
of their i
Scrum Mas
e created

Figure

s:

tate {

."

quirements
toryCard:

eleasable
rs of the

nsible for
this by en
nd rules.
rum Master
interactio
ster helps
by the Sc

e 145 – User

s contains

Increment
Developme

r ensuring
nsuring th
The Scrum
r helps th
ons with t
s everyone
crum Team.

r Story pract

s 1..N Use

t of “Done
ent Team c

g Scrum is
hat the Sc
m Master i
hose outsi
the Scrum
e change t
 (...cont

tice

erStory

 Es

e” product
create the

s understo
crum Team
is a serva
ide the Sc
Team are
these inte
tinues...)

ssence, Versio

t at the e
e Incremen

ood and
adheres t
ant-leader
crum Team
helpful a
eractions
"

on 1.0

end
nt.

to
r

and
to

Essence,

E.1.2.2

E.1.2.2

A User S
requirem

Graphic

Textual

alpha

, Version 1.0

2 Work P

.1 User St

Story can be s
ments item is d

cal syntax

syntax

UserStory
"A User S
Testable

with stat
 sta

 }
 sta

 }
 sta

 }
 sta

Products

tory

seen as a requ
escribed by a

y:
Story is a
requireme

tes {
ate Descri

"The U
checks

}

ate Unders
checks

}

ate Implem
checks

}

ate Fulfil

uirements item
User Story Ca

Fi

an Indepen
ent (INVES

bed {
User Story
s {
item c1 {
item c2 {

stood {"Th
s {
item c1 {
by the de
item c2 {
developer

mented {"T
s {
item c1 {
item c2 {

led {"The

m sub-alpha of
ard.

igure 146 – U

ndent, Neg
ST)"

y is descr

{"User Sto
{"User Sto

he User St

{"The User
evelopers.
{"The User
rs."}

The User S

{"The User
{"The impl

e User Sto

f Requiremen

User Story

gotiable,

ribed."

ory is des
ory is pri

tory has b

r Story ha
"}
r Story ha

Story has

r Story ha
lementatio

ory has be

ts that you wa

Valuable,

scribed by
ioritized

been analy

as been br

as been es

been impl

as been im
on has bee

een fulfil

want to monito

, Estimata

y the cust
by the cu

yzed by th

roken down

stimated b

lemented."

mplemented
en tested.

lled."

or the state of.

able, Smal

tomer."}
ustomer."}

he Team"

n into tas

by the

"

d."}
."}

 251

. This

ll,

}

sks

252

workPr

E.1.2.3

E.1.2.3

Graphic

E.1.2.3

Graphic

E.1.2.3

Graphic

E.1.3
In some p

 }
}

roduct Use
"The User
stories g
“As a <ro
“As a <ro

with leve
 lev

 }
}

3 Activit

.1 Write U

cal syntax

.2 Prioriti

cal syntax

.3 Estima

cal syntax

Multi-
practices in co

Multiple Requ

Multi-phase T

checks

}

erStoryCar
r Story Ca
generally
ole>, I wa
ole>, I wa

els {
vel someLe

"..."

ties

User Story

ze User Sto

ate User Sto

-phase W
ommon use, th

uirements and

Testing Activit

s {
item c1 {

rd:
ard contai
follow th
ant <goal/
ant <goal/

evel {

Figur

ory

Figure

ory

Figure

Waterfall
here are multip

d Design Activ

ties normally

{"The Cust

ins the de
he followi
/desire> s
/desire>”"

re 147 – Wri

148 – Priori

149 – Estim

iple phases of

vities normall

flow bottom u

tomer has

escription
ing templa
so that <b
"

ite User Sto

itize User St

mate User St

Requirements

y flow top do

up.

approved

n of the U
ate:
benefit>”

ry

tory

tory

s Definition, e

wn.

 Es

the imple

User Story

each adding m

ssence, Versio

ementation

y. User

more detail.

on 1.0

n."}

Essence, Version 1.0 253

This practice example is closely related to the so-called V-Model for software process engineering http://www.the-
software-experts.de/e_dta-sw-process.htm .

 Actual Flow of Activities associated with each phase can be quiet complex in a real project.

 Requirements alpha specializations are needed to model requirement documents from each phase.

E.1.3.1 Activities

The general form of the V-model of Activities for the Muti-phase Waterfall practice is shown in Figure A.x

Figure 150 – Multi-phase Waterfall Practice Activities Flow

Figure 150 shows an example of “V-Model” for Multi-phase Waterfall Practice. Each Test Activity verifies/validates
work products of one Requirements/Design Activity. Normal progression flows from left to right. If defects are detected
or rewind is required, process flows back to appropriate point thru the depicted virtual node

E.1.3.1.1 Requirements Definition Phase

Description Major work products

 Confirm the systematization requirements to define
functional (system functions, data, interface) and non-
functional requirements

 Define and outline design of the system and examine
the feasibility of the system.

 Develop a project plan and establish management
measurers to carry out the project.

 Use cases & Scenario

 Business flows

 Business rules

 Data model (High-level)

 Execution environment prescription (as Non-
functional requirement)

 Business operational test spec.

E.1.3.1.2 External Design Phase

Description Major work products

 Design high-level specifications for end users such as
system functions, data, interfaces, screens and print-
form

 Application architecture spec.

 Conceptual data model

254 Essence, Version 1.0

 Design the system architecture and operation
measures.

 Investigate the current assets (applications, system
configuration, data) to determine which resources
should be transferred to the new system.

 Develop a total test plan.

 Screen Design spec.

 Printing-form design spec.

 Process structure spec.

 Interface design spec.

 Message & Code design

 Detail Non-functional requirements

 System test specification.

E.1.3.1.3 Detailed Design Phase

Description Major work products

 Design the system internal structure (ex. program unit,
database physical structure) and interfaces between
programs based on the outline specifications.

 Design an operation management system, security
system, and methods for transition of the current
resources.

 Software component/module spec.

 Physical Database schema specification

 Detail screen spec.(screen constituent)

 Performance design

 Security design

 Integration test spec

E.1.3.1.4 Implementation/Programming Phase

Description Major work products

 Define program structure and design program logic

 Develop and complete programs based on the program
design

 Implement the database based on the data model.

 Test each program module individually to verify
correctness and quality.

 Source code

 Middleware/Hardware configuration specification.

 Database definition Language

E.1.3.1.5 Integration Test Phase

Description Major work products

 Test each process by integrating programs to verify the
application.

 Test interfaces between all processes

 Confirm interfaces between external systems

 Result reports for Integration test spec.

E.1.3.1.6 System Test Phase

Description Major work products

Essence, Version 1.0 255

 Test the business system functions on the actual
machines.

 Test the entire system by evaluating system
performance, reliability, operability, security, etc.

 Result reports for System test spec.

E.1.3.1.7 Operational Test Phase

Description Major work products

 Test business operations in the real environment with
actual machines and real data. This test is performed
by end users.

 Validate the business functions, performance,
reliability, operability, and security.

 Make decision to transit from test operation to real
operation, and perform a transition.

 Result reports for business operational test.

E.1.3.2 Alpha Extensions for Multi-Phase Waterfall Requirements

Figure 151 – Multi-phase Waterfall Requirements Alpha Extensions and Requirements Spec Work
Products

256 Essence, Version 1.0

High Level Requirements Specs (Functional and Non-Functional) are produced by Requirements Definition Activity.

External Requirements Specs (Functional and Non-Functional) are produced by External Design Activity.

Detailed Requirements Specs (Functional and Non-Functional) are produced by Detailed Design Activity.

Each Requirements extension Alpha has:

 Its own state values, the same as specified for the Requirements Alpha;

o Conceived; Bounded; Coherent; Described; Addressed; Fulfilled

 Functional and Non-Functional Requirements Spec Work Products

o each having Sub-Alphas for every requirement Item, with their own state values (the same as specified
for the Requirments Item Sub-Alpha Kernel Extension

o Requirements Alpha Extension state transitions conditional on Requirements Item Sub-alpha state
transitions

E.1.3.3 Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions

Figure 152 – Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions

E.1.3.4 Extensions of Requirements Item Alpha for Tracking Individual Multi-Phase
Waterfall Requirement Items

If a project needs to track to state of each individual requirements item, the following Sub-Alpha extensions of the
Requirements Item kernel Extension Sub-alpha can be employed.

Essence, Version 1.0 257

The individual Requirement Work products are part of their respective Requirements Spec (Functional or Non-
Functional) associated with their parent Requirements Alpha Extension.

Figure 153 – High-Level Requirements Sub-Alphas and Requirement Work Products

Figure 154 – External Requirements Sub-Alphas and Requirement Work Products

258 Essence, Version 1.0

Figure 155 – Detailed Requirements Sub-Alphas and Requirement Work Products

E.1.4 Lifecycle Examples
The Essence Kernel enables practices to define lifecycles by sequencing a number of patterns, one for each phase and/or
milestone in the lifecycle.

This section provides illustrations of a number of typical software engineering lifecycles:

 A Unified Process lifecycle

 A waterfall lifecycle

 A set of complementary application development lifecycles

 A funding and decision making lifecycle

When reading these sections one should bear in mind that a lifecycle practice can do more than just arrange the alpha
states, it can also add items to the checklists, activities to formally review the milestones and any other planning or
review guidance it sees fit.

All the lifecycles are illustrated using the template shown in Figure 156.

Essence,

Each Ker
bottom. M
and cont
Where ac

E.1.4.1

An illustr
phases: I
Objective
milestone

, Version 1.0

rnel Alpha an
Milestones are
tinuing with a
chieving a stat

1 The Un

ration of the U
Inception, Ela
es Milestone,
es are represen

d its states are
e shown as a v
a white line o
te is either rec

nified Pro

Unified Proce
aboration, Co
Lifecycle Ar

nted by the bl

Figure

e shown in a v
vertical bar ac
over which ar
commended or

cess Lifec

ess Lifecycle
onstruction an
rchitecture Mi
lue inverted tr

e 156 – Lifec

vertical colum
cross the grid
re shown the
r optional the

cycle

is shown in F
nd Transition
ilestone, Initia
riangles but th

cycle templa

mn with their c
starting with a
states to be
state is shown

Figure 157. In
n. Each of th
al Operationa

he names are s

ate

creation at the
an inverted tri
achieved to s
n with a dashe

n the Unified P
hese ends in
al Capability,
uppressed to k

e top and thei
iangle to repre
successfully p
ed outline and

Process Lifec
a distinct mi
Project End.
keep things si

r destruction
esent the mile
pass the miles
d italicized tex

cycle there are
ilestone: Life
In Figure 157

imple.

 259

at the
estone
stone.
xt.

e four
ecycle
7, the

260

E.1.4.2

An illustr
Analysis
case are n

2 The W

ration of a Wa
and Design, I

not named.

Waterfall Lif

aterfall Lifecy
Implementatio

Figure 157 –

fecycle

ycle is shown i
on, Testing, an

Figure

– The Unifie

in Figure 158
nd Deploymen

e 158 – A Wa

ed Process

. In this case t
nt. Each of th

aterfall lifecy

lifecycle

there are six p
hese ends in a

ycle

 Es

phases: Initiat
distinct miles

ssence, Versio

ion, Requirem
stone, which in

on 1.0

ments,
n this

Essence,

Of most i

1.

2.

3.

E.1.4.3

The Kern
applicatio
developm
made up
organizat

Each life
practices
are delib
Unfortun
repeated

, Version 1.0

interest here a

The fact that t

Different team
with the hope

The Requirem
again until the

3 A set o

nel can be u
on developm

ment that they
pon an applic
tion and uses t

Figure 15

ecycle model i
, and each of

berately shown
nately this ma
at a larger siz

are:

there is no wo

m formations
e that the new

ments are suff
e Testing Phas

of comple

used in much
ment organizat

undertake. Fi
cation develo
their names fo

59 – Differen

is supported b
which has its
n in a single
akes the word
ze in Figure 16

ork on the syst

are used for e
team will be c

fficiently desc
se.

mentary a

more subtle
tions to need
igure 159 show
opment organ
or the four life

nt types of d

by a method, e
s own lifecycl
 diagram to
ding very har
61, Figure 162

tem itself unti

each phase an
collaborating

cribed by the

application

e ways than i
d multiple lif
ws four comp
nization. This
ecycle models

developmen

each of which
le. The four li
make the dif
rd to read. If
2, Figure 163

il the Analysis

nd so the state
g and performi

end of the R

n develop

in the previo
fecycles to c
lementary life
s example is
s.

nt need diffe

h is built on th
ifecycles are s
fferences in th
f you are inte
and Figure 16

s and Design P

of the team k
ing before the

Requirements

ment lifec

us two exam
ope with the
ecycle models
s taken from

erent metho

e same kernel
shown in Figu
he arrangeme
erested in the
64.

Phase at the ea

keeps getting
e end of its pha

Phase and th

cycles

mples. It is no
e different ty
s illustrating th

m a real softw

ods and lifec

l, many of wh
ure 160. Here
ents of the sta
 details of th

arliest.

set back to fo
ase.

hen not progr

ot un-commo
ypes and styl
he typical dem
ware develop

cycles

hich share the
the four lifec

ates easily vi
he figures the

 261

ormed

ressed

on for
es of

mands
pment

same
cycles
isible.
ey are

262

The inter

1.

2.

3.

4.

Figure 1

resting things

The different
developments
established, th
used.

The way that
operational S
changes and n
Exploratory o

The different
and the Suppo

The Standard

160 – Four c

to note here a

starting poin
s is done outs
he Requireme

maintenance
System. These
not allowing a
or the Standard

end points of
ort method co

d lifecycle is ca

complement

are:

nts of the diffe
ide the Applic

ents are bound

doesn’t start
e two methods
architectural c
d lifecycles an

f the different
ontinues until t

alled standard

tary lifecycl

erent lifecycle
cation Develo
ded and the Sy

until there is
s are very foc
change. If you
nd their suppo

lifecycles. Fo
the system is

d as this is the

les to suppo

es. In this cas
opment projec
ystem is archi

a usable syste
used with the

u want to chan
orting methods

or example Tra
retired.

default lifecy

ort applicatio

se much of the
t; hence the fa
tecture selecte

em, and Supp
Maintenance

nge the archite
s.

ansition is opt

ycle for the tea

 Es

on developm

he preparation
fact that the O
ed before the

port doesn’t sta
e lifecycle onl
ecture you mu

tional in the E

ams to follow.

ssence, Versio

ment

work for stan
pportunity is
standard meth

art until there
ly supporting
ust apply eithe

Exploratory m

.

on 1.0

ndard
value

hod is

 is an
small
er the

ethod

Essence,, Version 1.0

Figure 16

Figure 1

61 – The Exp

162 – The St

ploratory life

tandard lifec

ecycle

cycle

 263

264

Figure 163

Figure

3 – The Main

164 – The S

ntenance lif

Support lifec

fecycle

cycle

 Esssence, Versioon 1.0

Essence,

E.2

E.2.1
In Scrum
express t
composit

This simp
Requirem

E.3

E.3.1
The conc

, Version 1.0

Com

Comp
m requirement

these require
tion of the Scr

ple compositi
ments. The res

Enac

Enact
crete syntax o

posing

posing S
t items are ex
ments items.
rum and User

F

on adds work
sult of the mer

ctment o

tment us
f the language

Practic

Scrum an
pressed as Pr
Many Scrum

Story work pr

Figure 165 –

products from
rger is shown

Figure 1

of Meth

sing Alph
e has been de

ces into

nd User S
roduct Backlo
m teams ado
roducts with r

– Merging Us

m different pra
below.

166 – Scrum

ods

ha State
esigned so tha

o Method

Story
og items. Scru
opt user storie
respect to the

ser Story wi

actices to the

m with User S

Cards
t usage of the

ds

um does not p
es to express
Requirements

ith Scrum

same alpha, a

Story

e composed pr

provide any gu
s their requir
s alpha is show

and also relate

ractices, i.e., t

uidance on ho
rements. A si
wn below.

es the sub-alph

the method, sh

 265

ow to
imple

has of

hould

266

be easy b
Sprint alp

These ca
according
that all ch

by the practiti
pha at the initi

ards can be us
g to the check
heckpoints are

oners. One ke
ial state.

sed for readin
klist defined. B
e ticked off.

ey idea here is

Figure 167 –

ng and unders
Below we sho

s the concept

– Sprint sta

standing the p
ow the state c

of Alpha state

te card (init

practice, and a
card for the Sp

e cards. Below

ial state)

also how to p
print alpha in

 Es

w we show th

progress the s
the Planned s

ssence, Versio

he state card fo

states of the S
state. This req

on 1.0

or the

Sprint
quires

Essence,

These sta
do in ord
our langu

, Version 1.0

ate cards may
der to move fro
uage would al

F

y also have dif
om one state t
low us to defi

Figure 168 –

fferent views
to another, or
ine the necessa

Sprint state

so that instea
which work p
ary views that

e card (plann

ad of the check
products to pr
t are suitable f

ned state)

klist items on
oduce. Using
for different k

ne could get a
the concept o

kinds of practi

list of activit
of ViewSelecti
itioners.

 267

ies to
ion in

